
Motion of Charged Particle in Fields
Plasma are complicated because motions of electrons and ions are determined by the
electric and magnetic fields but also change the fields by the currents they carry.
For now we shall ignore the second part of the problem and assume that fields are
prescribed.
Even so, calculating the motions of a charged particle can be quite hard.
Equation of motion:

m dvdt = qE + v × B

v: velocity, q: charge, E: Electric Field, B: magnetic field
qE + v × B: Lorentz Force

Have to solve this differential equation, to get position (r) and velocity (v=ṙ) given E(r,t),
B(r,t).

Approach: start simple, gradually generalize.

1. Uniform B field, E = 0
m v̇ = qv × B

Qualitatively in the plane perpendicular to B: Acceleration is perpendicular to v
so particle moves in a circle whose radius rL is such as to satisfy

mrLΩ2
= m v⊥

2

rL = |q|v⊥B

Ω: angular (velocity) frequency
1st equality shows Ω

2
=

v⊥2

rL2
(rL =

v⊥
Ω
)

Hence second gives m v⊥
Ω
Ω
2
= |q|v⊥B
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i.e.

Ω =
|q|B
m

Particle moves in a circular orbit with angular velocity Ω (“Cyclotron frequency”) and radius
rL (“Larmor Radius”, “Gyro Radius”).

Some Vector Algebra:
● Particle Energy is constant. Proof : take v⋅ Eq of motion then

mv̇ ⋅ v =
d
dt 

1
2 mv

2 = qv ⋅ v × B = 0

● Parallel and perpendicular motions separate. v // = const. because accelerate is
perpendicular to B.

Perpendicular Dynamics:
Take B in ẑ direction and write components
mv̇x = qvyB, mv̇y = −qvxB
Hence v̈x =

qB
m v̇y = −

qB
m 2vx = −Ω

2vx
Solution: vx = v⊥ cosΩt (choose zero of time)
Substitute back: vy =

m
qB v̇x = −

|q|
q v⊥ sinΩt

Integrate:
x = x0 + v⊥

Ω
sinΩt, y = y0 + q

|q|
v⊥
Ω
cosΩt

This is the equation of a circle with center r0 = x0, y0 and radius rL =
v⊥
Ω
: Gyro Radius

Direction of motion is as indicated opposite for opposite sign of charge:
Ions rotate anticlockwise
Electrons clockwise about the magnetic field.
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The current carried by the plasma always is in such a direction as to reduce the magnetic
field.
This is the property of a magnetic material which is “Diamagnetic”.
When v // is non-zero the total motion is along a
“helix”:

2. Uniform B and nonzero E
m v̇ = qE + v × B

Parallel motion: Before, when E = 0 this was v // = const. Now it is clearly v̇ // =
qE//
m ,

constant acceleration along the field.
Perpendicular motion:
Qualitatively:

Speed of positive particle is greater at top than bottom so radius of curvature is greater.
Result is that guiding center moves perpendicular to both E and B. It “drift” across the field.

Algebraically: It is clear that if we can find a constant velocity vd that satisfies
E + vd × B = 0

then the sum of this drift velocity plus the velocity vL =
d
dt rLe

iΩt−t0 

which we calculated for the E = 0 gyration will satisfy the equation of motion.
Take ×B the above equation:

0 = E × B + vd × B × B = E × B + vd ⋅ BB − B2vd
so that

vd =
E × B
B2

does satisfy it.
Hence the full solution is
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v = v// + vd + vL
where
v̇// = qE //

m
and
vd =

E×B
B2

is the “E × B drift” of the gyrocenter.

Comments on E × B drift:
1. It is independent of the properties of the drifting particle (q,m, v, whatever)
2. Hence it is in the same direction for electrons and ions.
3. Underlying physics for this is that in the frame moving at the E × B drift E = 0.

We have ‘transformed away’ the electric field.
4. Formula given above is exact except for the fact that relativistic effects have

been ignored. They would important if vd ∼ c.

Drift due to Gravity or other Forces
Suppose particle is subject to some other force, such as gravity, write F so that

mv̇ = F + qv × B = q 1q F + v × B

This is just like the Electric field case except with 1
q F replacing E,

The drift is therefore:
vd =

1
q
F × B
B2

in this case, if force on electrons and ions is same, they drift in opposite directions.

This general formula can be used to get the drift velocity in some other cases of interest
(see later).

3. Non-Uniform B Field
3.1 Grad-B drift

If B-lines are straight but the magnitude of B varies in space we get orbits that look
qualitatively similar to the E ⊥ B case:
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Curvature of orbit is greater where B is greater causing loop to be small on the side. Result
is a drift perpendicular to both B and ∇B. Notice, though, that electrons and ions go in
opposite directions (unlike E × B.

Algebra:
We try to find a decomposition of the velocity as before into v = vd + vL, where vd is
constant.
We shall find that this can be done only approximately. Also we must have a simple
expression for B. This we get by assuming that the Larmor radius is much smaller that the
scale length of B variation. i.e. rL << B/|∇B| in which case we can express the field
approximately as the first two terms in a Taylor expansion:

B ≃ B0 + r ⋅ ∇B
Then substituting the decomposed velocity we get:

m dvdt = mv̇L = qv × B = qvL × B0 + vd × B0 + vL + vd × r ⋅ ∇B

or
0 = vd × B0 + vL × r ⋅ ∇B + vd × r ⋅ ∇B

Now we shall find that vd/vL is also small, like r|∇B|/B. Therefore the last term here is
second order but the first two are first order. So we drop the last term.
Now the awkward part is that vL and rL are periodic. Substitute for r = r0 + rL so

0 = vd × B0 + vL × rL ⋅ ∇B + vd × r0 ⋅ ∇B
We now average over a cyclotron period. The last term is ∝ exp−iΩt so it averages to
zero:

0 = vd × B0 +< vL × rL ⋅ ∇B >

To perform the average use

rL = xL, yL =
v⊥
Ω

sinΩt, q|q| cosΩt

vL = ẋL, ẏL = v⊥cosΩt,−
q
|q| sinΩt
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So
vL × rL ⋅ ∇Bx = vyy ddy B

vL × rL ⋅ ∇By = −vxy ddy B

(Taking ∇B to be in the y-direction)
Then

< vyy >= − < cosΩt sinΩt > v
⊥

2

Ω
= 0

< vxy >=
q
|q| < cosΩt cosΩt > v

⊥

2

Ω
=
1
2
v
⊥

2

Ω

q
|q|

so

< vL × rL ⋅ ∇B >= −
1
2
q
|q|
v
⊥

2

Ω
∇B

Substitute in: 0 = vd × B0 − 1
2
q
|q|

v⊥2

Ω
∇B and solve as before to get:

vd =

−
1
2
q
|q|

v⊥2

Ω
∇B × B
B2

=
q
|q|
v
⊥

2

2Ω
B ×∇B
B2

or equivalently

vd =
1
q
mv

⊥

2

2B
B ×∇B
B2

This is called the ‘Grad-B drift’.

3.2 Curvature Drift
When the B-field lines are curved and the particle has a velocity v // along the field, another
drift occurs.

Take |B| constant, radius of curvature Re
To 1st order the particle just spirals along the field.
In the frame of the guiding center, a force appears because the frame is rotating about the
center of curvature.
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This centrifugal force is Fcf

Fcf = m
v //2

Rc
pointing outward as a vector

Fcf = mv //2
Rc
Rc2

[There is also a coriolis force 2mω × v but this averages to zero over a gyroperiod]
Use the previous formula for a force

vd =
1
q
Fcf × B
B2

=
mv //2

qB2
Rc × B
Rc2

This is the “Curvature Drift”.

It is often convenient to have this expressed in terms of the field gradients. So we relate Rc
to ∇B etc. as follows:

(Caveats denote unit vectors)
From the diagram
db = b̂2 − b̂1 = −R̂cα
and
dl = αRc
So
db
dl = −

R̂c
Rc

= −
Rc
Rc2

But (by definition) db
dl = b̂ ⋅ ∇b̂

So the curvature drift can be written

vd =
mv //2
q

Rc
Rc2

×
B
B2

=
mv //2
q

B ×b̂ ⋅ ∇b̂
B2

3.3 Vacuum Fields: Relation between ∇B & Rc drifts
The curvature and ∇B are related because of Maxwell’s equations, their relation depends
on the current density j. A particular case of interest is j = 0: vacuum fields.
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∇ × B = 0 (static case)
Consider the z-component
0 = ∇ × Bz =

1
r

∂

∂r rBθ (Br = 0 by choice)
=

∂Bθ

∂r +
Bθ

r

or, in other words, ∇Br = −
B
Rc

[Note also 0 = ∇ × B
θ
=

∂

∂z Bθ : ∇Bz = 0]
and hence ∇Bperp = −BRc/Rc2
Thus the grad B drift can be written:

v∇B =
mv⊥2
2q

B × ∇B
B3

=
mv⊥2
2q

Rc × B
Rc2B2

and the total drift across a vacuum field becomes

vR + v∇B =
1
q mv //

2
+
1
2 mv⊥

2
Rc × B
Rc2B2

Notice the following:
1. Rc & ∇B drifts are the same direction.
2. They are in opposite directions for opposite charges.
3. They are proportional to particle energies.
4. Curvature ↔ Parallel energy (×2), ∇B ↔ Perpendicular energy
5. As a result one can very quickly calculate the average drift over a thermal

distribution of particles because <
1
2 mv //

2
>= T/2,< 1

2 mv⊥
2
>= T ( 2 degrees of

freedom)
Therefore

< vR + v∇B >=
2T
q
Rc × B
Rc2B2

=
2T
q
B ×b̂ ⋅ ∇b̂

B2

4. The Effects of Parallel Field Gradients Mirror Effect: E = 0, ∇B // B
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In the above situation there is a net force along B. Force is
< F // > −|qv × B|sinα = −|q|v⊥B sinα

sinα = −Br/B
Calculate Br as function of Bz from ∇ ⋅ B = 0 (Bθ = 0

∇ ⋅ B =
1
r

∂

∂r rBr +
∂

∂z Bz = 0

Hence

rBr = − ∫ r ∂Bz
∂z dr

Suppose rL is small enough that ∂Bz
∂z ≃ const.

rBr0
rL

= − ∫
0

rL
rdr ∂Bz

∂z = −
1
2 rL

2 ∂Bz
∂z

So

BrrL = −
1
2 rL

∂Bz
∂z

sinα = −
Br
B =

rL
2
1
B

∂Bz
∂z

Hence

< F // >= −|q| v⊥rL2
∂Bz
∂z = −

1
2 mv⊥

2

B
∂Bz
∂z

As particle enters increasing field region it experiences a net parallel retarding force.
Define Magnetic Moment

μ ≡

1
2 mv⊥

2

B
Note this is consistent loop current definition:

μ = AI = πr2 ⋅ |q|v⊥2πrL
=
|q|rLv⊥
2

force is

F // = −μ
∂Bz
∂z

This is force on a ’magnetic dipole’ of moment μ

F // = μ ⋅ ∇ //B
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Our μ always points along B but in opposite direction

Force on an Elementary Magnetic Moment Circuit
Consider a plane rectangular circuit carrying current I having elementary area dxdy = dA.
Regard this as a vector pointing in ẑ direction dA.
The force on this circuit in a field Br is F such that

Fx = IdyBzx + dx − Bzx = Idydx ∂Bz
∂x

Fy = −IdxBzy + dy − Bzy = Idydx ∂Bz
∂y

Fz = −IdxByy + dy − Byy − IdyBxx + dx − Bxx

= −Idxdy ∂Bx
∂x +

∂By
∂y  = Idydx ∂Bz

∂z
(using ∇ ⋅ B = 0

Hence, summarizing: F = Idydx∇Bz
Now define μ = IdA =Idydx ẑ
and take it constant. Then clearly the force can be written

F = ∇B ⋅ u = ∇B ⋅ μ
μ is the (vector) magnetic moment of the circuit.
The shape of the circuit does not matter since any circuit can be consider to be composed
of the sum of many rectangular circuits. So in general

μ = IdA
and the force is

F = ∇B ⋅ μ

(μ constant)

We shall show in a moment that |μ| is constant for a circulating particle, regarded as an
elementary circuit. Also, μ for a particle always points in the -B direction. [Note that this
means that the effect of particles on the field is to decrease it.] Hence the force may be
written

F = −μ∇B
This gives us both:
● Magnetic Mirror Force: F // = −μ∇ //B
● Grad B Drift: v∇B =

1
q
E×B
B2

=
μ

q
B×∇B
B2

μ is a constant of the motion
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“Adiabatic Invariant”
Proof from F //
Parallel equation of motion

m dv //dt = F // = −μ dBdz
So

mv //
dv //
dt =

d
dt 

1
2 mv //

2 = −μvz dBdz = −μ dBdt
or

d
dt 

1
2 mv //

2 + μ dBdt = 0

Conservation of Total KE
d
dt 

1
2 mv //

2
+
1
2 mv⊥

2 = 0

d
dt 

1
2 mv //

2
+ μB = 0

Combine
d
dt μB − μ dBdt = 0

du
dt = 0

As required.

Angular Momentum
of particle about the guiding center is

rLmv⊥ =
mv⊥
|q|B mv⊥ =

2m
|q|
1/2mv

⊥

2

B =
2m
|q| μ

Conservation of magnetic moment is basically conservation of angular momentum about
the guiding center.

Proof direct from Angular Momentum
Angular momentum about the guiding center is conserved because θ is (locally) ignorable.
However it is canonical angular momentum that is conserved.

p = r × mv + qAz
Here A is the vector potential such that B = ∇ × A
The definition of the vector potential means that

Bz =
1
r

∂

∂r rAθ

Integrate over r = 0 to rL
rLAθrL = ∫

0

rL rBzdr =
rL2

2 Bz =
1
2 

mv⊥
|q|B 

2Bz =
μm
|q|2
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Then
p = −

q
|q| rLmv⊥ + q μm

|q|2

= −
q
|q|
mv⊥
|q|B mv⊥ +

m
q μ

=
m
q −2μ + μ = −

m
q μ

Thus if p is constant, i.e. canonical momentum conserved, then μ = const.
Conservation of μ is basically conservation of angular momentum of particle about G.C.

Mirror Trapping

F // may be enough to reflect particle back. But may not!
Let’s calculate whether it will:
Suppose reflection occurs.
At reflection point v //r = 0
Energy Conservation 1

2 mv⊥0
2

+ v //02  =
1
2 mv⊥r

μ conservation 1/2mv
⊥0
2 /B0 = 1/2mv

⊥r
2 /Br

Hence v
⊥0
2

+ v //02 = Br/B0v⊥0
B0
Br

=
v
⊥0
2

v
⊥0
2

+ v //02

Pitch Angle θ

tan θ =
v⊥
v //

B0
Br

=
v
⊥0
2

v
⊥0
2

+ v //02
= sin2θ

So given a pitch angle θ0 reflection takes place where B0/Br = sin2θ0
If θ0 is too small no reflection can occur.
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Critical ang θc is obviously
θc = sin−1B0/B11/2

Loss Cone is all θ << θc

Important of Mirror Ratio: Rm = B1/B0.

Other Features of Mirror motions
Flux enclosed by gyro orbit is constant.

Φ = πrL2B = π
m2v

⊥

2

q2B2
B

=
2πm
q2

1
2 mv⊥

2

B

=
2πm
q2

μ = const.

Note that if B changes ’suddenly’. μ might not be conserved.
Basic requirement

rL << B/|∇B|
Slow variation of B (relative to rL).
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5. Time Varying B Field (E inductive)

Particle can gain energy from the inductive E field ∇ × E = −∂B/∂t
or

∮ E ⋅ dl = − ∫
s
Ḃ ⋅dS = −

dΦ
dt

Hence work done on particle in 1 revolution is

δw = − ∮|q|E ⋅ dl =|q|∫
s
Ḃ ⋅dS =|q| dΦdt = |q|ḂπrL2

(dl and v⊥q are in opposite directions)

δ 12 mv⊥
2 = |q|ḂπrL2 =

2πḂm
|q|B

1
2 mv⊥

2

B

=
2πḂ
|Ω| μ

Hence
d
dt 

1
2 mv⊥

2 =
|Ω|
2π δ 12 mv⊥

2 = μ dBdt
d
dt 

1
2 mv⊥

2 =
d
dt μB

Hence
dμ
dt = 0

Notice that since Φ = 2πm/q2 μ

this is just another way of saying that the flux through the gyro obit is conserved.
Notice also energy increase. Method of ’heating’. Adiabatic Compression.

6. Time Varying E-field (E, B uniform)
Recall the E × B drift: vE×B = E × B/B2
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When E various so dose vE×B. Thus the guiding center experiences an acceleration

v̇E×B =
d
dt E × B/B2

In the frame of the guiding center which is accelerating, a force if felt.

Fa = −m ddt 
E × B
B2



(Pushed back into seat! -ve.)
This force produces another drift

vp =
1
q
Fa × B
B2

= −
m
qB2

d
dt 

E × B
B2

 × B

= −
m
qB

d
dt E ⋅ BB − B2E

=
m
qB2

Ė⊥

This is called the “polarization drift”

vD = vE×B + vp =
E × B
B2

+
m
qB2

Ė⊥

=
E × B
B2

+
1
ΩB Ė⊥

Start-up effect: When we “switch on” an electric field the average position (gyro center) of
an initially stationary particle shifts over by ~1/2 the orbit size. The polarization drift is this
polarization effect on the medium.
Total shift due to vp is

Δr = ∫ vpdt = m
qB2

∫ Ė⊥ =
m
qB2

ΔE⊥

Direct Derivation of dE
dt effect: “Polarization Drift”

Consider an oscillatory field. E = Ee−iωt

m dvdt = qE + v × B

= qEe−iωt + v × B
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Try for a solution in the form

v = vDe−iωt + vL
where, as usual, vL satisfies mv̇L = qvL × B
Then
(1)

m−iωvD = qE + vD × B
solve for vD : Take ×B This equation:
(2)

− miωvD × B = qE × B + B ⋅ vDB −B2vD
add miω × 1 to q × 2 to eliminate vD × B

m2ω2vD + q2E × B −B2vD = miωqE
or

vD1 − m
2ω2

q2B2
 = −

miω
qB2

E +
E × B
B2

i.e.

vD1 − ω2

Ω
2  = −

iωq
ΩB|q| E +

E × B
B2

since −iω ↔ ∂/∂t this is the same formula as we had before: the sum of polarization and
E × B drifts except for the 1 − ω

2

Ω
2  term. This term comes from the change in vD with time

(accel). Thus our earlier expression was only approximate. A good approx if ω << Ω.

7. Non Uniform E (Finite Larmor Radius)
m dvdt = qEr + v × B

Seek the usual solution v = vD + vg
Then average out over a gyro orbit

< m dvDdt >= 0 =< qEr + v × B >

= q< Er > +vD × B
Hence drift is obviously

vD =
< Er > ×B

B2

So we just need to find the average E field experienced.
Expand E as a Taylor series about the G.C.

Er = E0 + r ⋅ ∇E +  x
2

2!
∂
2

∂x2
+
y2
2!

∂
2

∂y2
E +cross_terms +. . .

(e.g. cross terms are xy ∂2

∂x∂y E
Average over a gyro orbit: r = rLcos θ, sin θ, 0
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Average of cross terms = 0.
Then

Er = E0 + r ⋅ ∇E +
< rL2 >

2 ⋅ 2! ∇
2E

linear term < rL >= 0 , So

< Er >≃ E +
rL2
4 ∇

2E

Hence E × B with 1st finite-larmor-radius correction is

vE×B = 1 + rL
2

4 ∇
2E × B/B2

[Note: Grad B drift is a finite Larmor effect already.]

Second and Third Adiabatic Invariants
There are additional approximately conserved quantities like μ in some geometries.

Summary of Drifts

vE =
E × B
B2

Electric Field

vF =
F × B
qB2

General Force

vE = 1 + rL
2

4 ∇
2 E × B

B2
Nonuniform E

v∇B =
mv⊥2
2q

B × ∇B
B3

Grad B

vR =
mv //2
q

Rc × B
Rc2B2

Curvature

vR + v∇B =
1
q mv //

2
+
mv⊥2
2 

Rc × B
Rc2B2

Vacuum Fields

vp =
q
|q|

Ė⊥

|Ω|B Polarization

Mirror Motion:

μ ≡
mv⊥2
2B is constant

Force is
F = −μ∇B
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