
Fluid Description of Plasma
The single particle approach gets to be horribly complicated, as we have
seen. Basically we need a more statistical approach because we can’t follow
each particle separately. Fortunately, this is not usually necessary because,
surprisingly, the majority of plasma phenomena observed in real experiments
can be explained by a rather crude fluid model, in which the identity of the
individual particle is neglected, and only the motion of fluid elements is taken
into account. Of course, in the case of plasmas, the fluid contains electrical
charges. In an ordinary fluid, frequent collisions between particles keep the
particles in a fluid element moving togehter. It is surprising that such a model
works for plasmas, which general have infrequent collisions.
In the fluid approximation, we consider the plasma to be composed of two or
more interpenetrating fluids, one for each species. In the simplest case, when
there is only one specis of ion, we shall need two equations of motion, one
for the positively charged ion fluid and one for the negatively charged
electron fluid. In a partially ionized gas, we shall also need an equatuon for
the fluid of neutral atoms. The neutral fluid will interact with the ions and
electrons only through collisions. The ion and electron fluids will interact with
each other even in the absense of collisions, becuase of the E and B fields
are generated.

4.1 Fluid Equation of Motion
A. Equation of Motion – Neglecitng collisions and thermal motion
(1) Equation of motion for a single particle: (velocity v)

m dv
dt  qE  v  B

All partilces in a fluid element will move together with average velocity u,
because will neglect collisions and thermal effects. We can also take u  v,
and equation of motion for fluid element of particle density n is:

nm du
dt  nqE  u  B

where d
dt is to be taken at the position of the particles (fluid element)  not

very convenient. We wish to have an equation for fluid elements fixed in
space.
(2) Transform to variables in a fixed frame that move with fluid element.
To make the transformtion to variables in a fixed frame, consider G(x,t) to be
any property of a fluid in one-dimensional x space. The change of G with
time in a frame moving with the fluid is the sum of two terms:

dGx, t
dt  G

t  G
x

dx
dt  G

t  ux Gx
The first term on the right represents the change of G at a fixed point in
space, and the second term represents the change of G as the observer
moves with the fluid into a region in which G is different. In three dimensions

dG
dt  G

t  u  G
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This is called the convective derivative.
In the case of a plasma, we take G to be the fluid velocity u,

nm ut  u  u  nqE  u  B

B. Equation of Motion – Including Thermal Effects (Pressure Term)
When thermal motions are taken into accout, a pressure force has to be
added to the right-hand side. This force arised from the random motion of
particles in and out of a fluid element and does not appear in the equation
for a single particle. The random motion of the particles in the fluid element
is described as a collective effect.

(1) Consider only the x-component of motion through Faces A and B of the
fluid element if the figure, centered at (x0, 1

2 y,
1
2 z.

The number of particles per second passing through the face A with velocity
x is

nxyz
where n is the number of particles per m3 with velocity x :

n  x  fx, y, zdydz
f is the "distribution function" of particles in velocity space at a particular
spatial location.
Each particle carries a momentum mx. The momentum PA carried into the
element at x0 the through A (The momentum through face A, from particles
with x 0, in the fluid elelment centered at (x0  x, 1

2 y,
1
2 z is then

PA  myz 
0



x2fdx 




dydz

For a properly normalized f we have

n  




fdxdydz

And we can also define the average  x2  as:
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 x2 






x2fdx 




dydz






fdxdydz

(2) Then PA can be written as

PA  myz 12 n  x2 x0x

The factor 1
2 comes from the fact that only half the particles in the cube at

x0  x are going toward face A. Similarly, the momentum carried out
through face B is

PB  myz 12 n  x2 x0

(3) The net gain in momentum for particles with
PA  PB  myz 12 n  x2 x0x  n  x2 x0

 1
2 myzx


x n  x2 

This result will be just doubled by the contribution of left-moving particles,
since they carry negative x momentum and also move in the opposite
direction relative to the gradient of n  x2 . The total change of
momentum of the fluid element at x0 is therefore


t nmuxxyz  m 

x n  x2 xyz

(4) Let the velocity x of a particle be decomposed into two parts,
x  ux  xr, ux  x 

ux: x-component of fluid velocity
xr: x-component of random thermal motion.
For a one-dimensional Maxwellian distribution, we have 1

2 m  xr2  1
2 kT

 x2  ux2  kT/m


t nmux  m 

x ux
2  kT/mn

Re-grouping terms yield:

mn t ux  ux

x ux  mux


t n  

x nux   x nkT

But 
t n  

x nux  0, from Continuity Equation (see section 4.2)

mn t ux  ux

x ux  

x p, p  nkT  pressure

(5) This is the usual pressure-gradient force. Adding the electromagnetic

forces and generalizing to three dimensions, we have the fluid equation:
nm ut  u  u  nqE  u  B  p
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(6) What we have derived is only a special case: the transfer of x
momentum by motion in the x direction; and we have assumed that the fluid
is isotropic, so that the same result holds in the y and z directions. But it is
possible to transfer y momentum by motion in the x direction. Suppose that
the y-velocities of particles at x0  x and x0  x were a maximum, and
that vy  0 at x0. Then particles passing through Faces A and B would bring
more Y-momentum into the fluid element at x0 than they take out. This would
give rise to a shear stress on the fluid element at x0, which must be
described in general by a stress tensor, P, whose components Pij  mnij
specify both the direction of motion and the component of momentum
involved. In the general case, the term p is repalced by -  P . The
off-diagonal elements of P are usually associated with viscosity.

C. Equation of Motion – Including Collisions.
If a neutral gas is present, the charged fluid can exchange momentum with it
through collisions. The momentum lost per collision will be proportional to the
relative velocity u - u0, where u0 is the velocity of the neutral fluid. If , the
mean free time between collisions, is approximately constant, the resulting
force term can be roughly written as mnu  u0/. Then the fluid equation
of motion including neutral collisions and thermal effects is:

nm ut  u  u  nqE  u  B    P  mnu  u0


Notes:
(a) In the derivation, we did actually assume implicitly that there were
collisions when we took the velocity distribution to be Maxwellian. Such a
distribution generally comes about as the result of frequent collisions.
However, this assumption was used only to take the averages of xr2 . Any
other distribution with the same average would give us the same answer. The
fluid theory, therefore, is not very sensitive to devviations from the Maxwellian
distribution, although there are instances in which these deviations are
important.
(b) Another reason the fluid model works for plasmas is that the magnetic
field, when there is one, can play the role of collisons in a certain sense.

4.2 Fluid Equation of Continuity
Conservation of matter requires that the number of particles N in a volume V,
can only change if there is net particle flux across the surface S bounding
that volume,
N
t  change in particle number
nu  particle flux
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N
t  

t 
V

ndV   
S

nu  dA   
V

  nudV (by divergence theorem)

Since this must hold for any volume V, the integrands must be equal:

t n    nu 0 equation of continuity

4.3 Fluid Equation of State
One more relation is needed to close the system of equations. For this, we
can use the thermodynamic equation of state relating p to n:

p  C

Where C is a constant and  is the ratio of specfic heats Cp/Cv.

p  C1  p/  p
p   nn (  mn

(1) For isothermal compression:p  kTn    1
(2)Adiabatic compression (T also changes)

n
n  T

T   nn  T
T    1 nn

(3)More general (adiabatic),   2  N/N,
where N is the number of degrees of freedom, it is valid for negligible heat
flow.

4.4. Summary of Two-Fluid Equations:
For simplicity, let the plasma have only two species: ions and electrons;
extension to more species is trival.
Species j (jelectrons, ions)
Plasma Response
1. Continuity:

nj
t    njj  0

2. Momentum:

mjnj
j
t  j  j njqjE  j  B  pj  vjknjmjj  k

3. Energy/Equation of State:
pjnj

  const.

Maxwell’s Equations
  B  0   E  /0

  B  0j  1
c2

E
t   E   Bt

with
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  qene  qini  ene  Zni
j  qenee  qinii  enee  Znii
 enee  i (quasineutral)

Accounting
Unknows Equations
ne,n 2 Continity e,i 2
e, i 6 Momentum e,i 6
pe,pi 2 State e,i 2
E, B 6 Maxwell 8

——– ——–
16 18

But 2 of Maxwell (  equs) are redundant because can be deduced from
others: e.g.

    E  0  
t   B

and

    B  0  0  j  1
c2

  E
t

so 16 equs for 16 unknowns.

Equations still very difficult and complicated mostly because it is Nonlinear.
In some cases can get a tractable problem by ‘linearizing’. That means, take
some known equilibrium solution and suppose the deriation (pertubation) from
it is small so we can retain only the 1st linear terms and not the others.

4.5 One-fluid (Magnetohydrodynamic or MHD) Equations
Reduction of Fluid Approach to the Single Fluid Equations
So far we have been using fluid equations which apply to electrons and ions
separately. These are called ‘two fluid’ equations because we always have to
keep track of both fluids separately.
A further simplification is possible and useful sometimes by combining the
electron and ion equations together to obtain equations governing the plasma
viewed as a ‘single fluid’. The MHD model is applicable only when charge
separation is negligible. The condition for it is that the length scales should
be larger than the Debye length and the time scales larger than the inverse
of plasma frequency. When we consider non-relativistic and slowly varying
motions of plasmas under the action of mechanical and magnetic forces, the
MHD model is the appropriate model to apply. We should keep in mind that
the main limitation of the MHD model is that it cannot be applied to
high-frequency phenomena which may involve charge separation (plasma
oscillations or electromagnetic waves in plasmas).

Recall 2-fluid equations
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Continuity (Cj)
nj
t    njj  0

Momentum (Mj)

mjnj
j
t  j  j  njqjE  j  B  pj  Fjk

where Fjk  vjknjmjj  k

Now we rearrange these 4 equations (2  2 species) by adding and
subtracting appropriately to get new equations governing the new variables:
Mass density:

m  neme  nimi
C of M velocity:

V  nemee  nimii/m
Charge density:

q  qene  qini
Electric Current density

j  qenee  qinii  qenee  i

Total Pressure
p  pe  pi

1st equation: take me  Ce  mi  Ci 
m
t    mV  0 Mass Conservation

2nd take qe  Ce  qi  Ci 
q
t    j 0 Charge Conservation

3rd take Me  Mi This is a bit more difficult. RHS becomes:

 njqjE  j  B  pj  Fjk  qE  j  B  pe  pi

(we use the fact that Fei  Fie so no net friction).
L.H.S. is


j
mjnj t  j  j

The difficulty here is that the convective term is no-linear and so does not
easily lend itself to reexpression in terms of the new variables. But note that
since me  mi the contribution from electron momentum is usually much
less than that from ions. So we ignore it in this equation. To the same
degree of approimation V  i: The CM velocity is the ion velocity. Thus for
the LHS of this momentum equation we take


j
mjnj t  j  j  m t  V  V

so:
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m t  V  V qE  j  B  p

Finally we take qe
me Me 

qi
mi Mi to get:


j
njqj t  j  j  

j

njqj2
mj E  j  B  qjmj pj 

qj
mj Fjk

Again several difficulties arise which it is not very profitable to deal with
rigorously. Observe that the LHS can be written (using quasineutrality) as
m 

t j/m (ignoring me/mi term) provided we discard the term in   .
(Think of this as a linearization of this equation) [The    convective
term is a term which is not satisfactorily dealt with in the single fluid
equations.]
In the R.H.S. we use quasineutrality again to write


j

njqj2
mj E  ne2qe2 1

neme  1
nimi E  ne2qe2 mini  menenemenimi E

  qeqi
memi mE


j

njqj2
mj j  neqe2

me e 
niqi2
mi i niqi  neqe

 qeqi
memi 

neqemi
qi e 

niqime
qe i

  qeqi
memi nimie  nemii

  qeqi
memi nemee  nimii 

 miqi  me
qe qenee  qinii

  qeqi
memi mV   miqi  me

qe j

Also, remembering,
Fei  veinemee  i  Fie


j

qj
mj Fjk  veineqe  neqi memi e  i

 vei1  qeme
qimi j

So we get

m t 
j
m   qeqi

memi mE  mV   miqi  me
qe j  B

 qe
me pe 

qi
mi pi  1  qeme

qimi veij

Regroup after multiplying by memi
qeqim :

E  V  B  memiqeqi

t 

j
m   1

m  miqi  me
qe j  B

  qeme pe 
qi
mi pi

memi
qeqim

 1  qeme
qimi 

memi
qeqim veij
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Notice that this is an equation relating the Electric field in the frame moving
with the fluid (L.H.S) to things depending on current, J. i.e. this is a
generalised form of Ohm’s Law.

One essentially never deals with this full generalised Ohm’s law. Make some
approximations recognizing the physical significance of the various R.H. S.
terms.
memi
qeqi


t 

j
m  arises from electron inertia. it will be negligible for low enough

frequency.
1
m  mi

qi  me
qe j  B is called the Hall Term

and arises because current flow in a B-filed tends to be diverted across the
magnetic field. It is also often dropped but the justification for doing so is
less obvious physically.

qi
mi pi term  qe

me pe for comparable pressures, and the later is ~the Hall
term.

Last term in J has a coefficient, ignoring me/mi c.f. 1 which is
memivei
qeqinimi

 meivei
qe2ne

  the resistivity

Hence dropping electron inertia, Hall term  pressure the Ohm’s law
becames:

E    B  j
Final equation needed: state:

penee  pini
i  const.

Take quasi-neutrality ne  ni  m
Take e  i :

pm  const.

4.6 Summary of Single Fluid Equations: MHD
Mass Conservation:

m
t    mV  0

Charge Conservation:
q
t    j  0

Momentum:
m t  V  V qE  j  B  p

Ohm’s Law
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E    B  j
Eq. of State:

pm  const.

Heuristic Derivation/Explanation
Mass/Charge: obvious
Momentum:

m t  V  V qE  j  B  p

m 
t  V  V : Rate of change of fluid total momentum density

qE : Body force density exerted on fluid’s charge
j  B : mag. force on its current
p : Pressure

Ohm’s Law
The electric field ‘seen’ by a moving (conducting) fluid is E    B  Ev
electric field in frame in which fluid is at rest. This is equal to ‘resistive’
electric field j :
Ev  E    B j
The qE term is generally dropped because it is much smaller than the j  B
term. To see this take orders of magnitude:

  E  q/0  q  E0/L

  B  0j 1
c2

E
t   j E  B

0L
so

qE  E20
L  0

L  B
0L

2

qE
jB  0

L  B
0L

2
0L
B2  1

c2
1

0L2

Take a typical vale for  for even a small cold plasma, say 1 eV, 1 cm;
  2  1031m1 then

1
c2

1
0L2

 1
3  108  4  107  2  103  1022

 108

Conclusion: qE force is much smaller than j  B for essentially all practical
cases. Ignore it.
Nomally, also, one uses MHD only for low frequency phenomena so the
Maxwell displacement current 1

c2
E
t can be ignored.

Also, we shall not need Poisson’s equation because that is taken care of by
quasi-neutrality.
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