
1 Plasma Kinetic Theory

1.1 Theoretical Hierarchy of Plasma Physics

In any macroscopic physical system containing many individual particles, there
are basically three levels of description: the exact microscopic description, ki-
netic theory, and the macroscopic or fluid description. In a microscopic descrip-
tion, one imagines writing down Newton’s law, F = ma, for something like 1020

particles and solving for all 1020 interacting trajectories. Such a description is
in principle exact, classically. Laplace was able to boast, "Give me the initial
data on the particles and I’ll predict the future of the universe", even though
he knew the system was insoluble in practice. It is still unimaginable today,
even by the most advanced computers. Even the initial data itself is beyond the
magnitude of imaginable storage deveices. Moreover, if solutions were known,
they would be mostly irrelevant information requiring another unimaginably ad-
vanced computers to distill into useful form. When the sensitivity of the exact
solution to miniscule initial condition erros is considered — the modern study of
chaos — the situation becomes even more absurd. Nonetheless, the microscopic
description is useful as a formal starting point from which to derive soluble,
practical descriptions.
The microscopic theory passed to kinetic theory by the application of sta-

tistical, probability concepts. SInce one is not interested in all the microscopic
particle data, one considers statistical ensembles of systems. By averaging out
the microscopic information in the exact theory, one obtains statistical, kinetic
equations. When possible, these are reduced further to give equations for the
one-paricle (i.e., electron or ion) distribuition fucntions. Examples of kinetic
equations are the Vlasov equation and the Boltzmann equation. Althouth the
precise locations of individual particles are lost in kinetic theory, detailed knowl-
edge of particle motion is requred. In this sense kinetic theory is still micro-
scopic, even though statistical averages have been employed. Finally, in some
cases, it is possible to reduce kinetic theory even further. Here, one has only
macroscopic quantities such as density, temperature, and fluid velocity, and
closed equations giveing their evolution in space and time. No knowlege of
individual paricle motion is required to describe observable phenomena.
As an introductory course, in this chapter will not be based on a formulation

of the microscopic world originated by Klimontovich. Instead, we follow Chen’s
approach (1984) to "derive" kinetic theory equaitons.

1.2 Kinetic Theory

A fluid model description of plasma waves and oscillations is frequently inad-
equate. For these, we need to consider the velocity distribution fuction f(υ);
this treatment is called kinetic theory. In fluid theory, the dependent variables
are functions of only four independent variables: x, y, z and t. This is possible
because the velocity distribution of each epecies is assumed to be Maxwellian
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everywhere and can therefore be uniquely specified by only one number, the
temperature T. However, if the velocity of a significant number of charged par-
ticles (typically the thermal velocity) is near to the phase velocity of waves,
the wave-particle interaction is significantly different from that described by the
fluid equations. A proper description of this interaction must be based upon
the dynamics of the particles’ phase space distribution function in which the
particles’ velocity and position are independent variables. Such a description is
provided by the kinetic theory equations for a plasma with self-consistent fields.

1.3 Distribution Functions

A plasma is an ensemble of particles electrons e, ions i and neutrals n with
different positions r and velocities v which move under the influence of external
forces (electromagnetic fields, gravity) and internal collision processes (ioniza-
tion, Coulomb, charge exchange etc.)
However, what we observe is some "average" macroscopic plasma parameters

such as j - current density, ne - electron density, P - pressure, Ti - ion temper-
ature etc. These parameters are macrosocopic averages over the distribution of
particle velocities and/or positions.

1.4 Phase Space

Consider a single particle of species α. It can be described by a position vector

r = xî+ yĵ + zk̂

in configuration space and a velocity vector

υ = υxı̂+ υy ̂+ υzk̂

in velocity space. The coordinates (r,υ) define the particle position in phase
space.
For multi-particle systems, we introduce the distribution fuction fα(r,υ,t)

for species α defined such that

fα(r,υ,t)drdυ = dN(r,υ,t)

is the number of particles in the element of volume dV = drdυ in phase space.
Here dr ≡ d3r ≡ dxdydz and dυ ≡ d3υ = dυxdυydυz. fα(r,υ,t) is a positive
finite function that decreases to zero as |υ| becomes large.
The element dr must not be so small that it doesn’t contain a statistically

significant number of particles. This allows fα(r,υ,t) to be approximated by a
continuous function.
Some definitions:

• If fα depends on r, the distribution is inhomogneous
• If fα is independent of r, the distribution is homogneous
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Figure 1:

• If fα depends on the direction of υ, the distribution is anisotropic
• If fα is independent of the direction of υ, the distribution is isotropic
• A plasma in thermal equilbrium is characterized by a homogeneous, isotropic
and time-independent distribution funciton.

One type of contour map can be made for f if we consider f(υ) at a
given point in space, which are very useful for getting a preliminary idea of
how the plasma behaves. For instance, if the motion is two dimensional, the
contours f(υx, υy) will be circles if f is isotropic in υx, υy. An anisotropic distri-
bution would have elliptical contours. A drifting Maxwellian would have cicular
contours dispaced from the origin, and a beam of particles traveling in the x
direction would show up as a separate spike.

1.5 Equation of Kinetic Theory

Vlasov Equation
Treat particles as moving in 6-D phase r position, υ velocity. At any instant

a particle occupies a unique position in phase space (r,υ).
Consider an elemental volume drdυ of phase space [dxdydzdυxdυydυz], at

(r,υ). Write down an equation that is conservation of particles for this volume

− ∂

∂t
(fd3rd3υ)= [ υxf(x+ dxx̂,υ)− υxf(x,υ)]dydzd

3υ

+ same for dy,dz

+[axf(r,υ + dυxυ̂x)− axf(r,υ)]d
3rdυydυz

+same for dυy,dυz
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a is ‘velocity’ in velocity i.e. acceleration.
Divide through by d3rd3υ and take limit

−∂f
∂t

=
∂

∂x
(υxf) +

∂

∂y
(υyf) +

∂

∂z
(υzf)

+
∂

∂υx
(axf) +

∂

∂υy
(ayf) +

∂

∂υz
(azf)

= ∇ · (υf) +∇υ · (af)
[Notation: use ∂/∂r↔∇ as usual in (x,y,z) space; ∂/∂υ ↔∇υ

∂

∂υ
= î

∂

∂υx
+ ĵ

∂

∂υy
+ k̂

∂

∂υz

]
Take this simple continuity equation in phase space and expand:

∂f

∂t
+ (∇ · υ)f + (υ ·∇)f + (∇υ · a)f + (a ·∇υ)f = 0

Recognize that ∇ means here ∂/∂x etc keeping υ constant. so that ∇ ·υ = 0
by definition. So

∂f

∂t
+ υ · ∂f

∂r
+ a · ∂f

∂υ
= −f (∇υ · a)

The Vlasov-Maxwell Plasma Model
Now we want to couple this equation with Maxwell’s equations for the fields

self-consistently to the plasma charges and currents as determined from the
appropriate moments of the distribution funciton, f,

∇×E = −∂B
∂t
; ∇×B = µ0j+

1

c2
∂E

∂t

∇ ·E =
ρ

0
; ∇ ·B = 0

Coupling is completed via charge & current densities

ρ =
X
j

qjnj =
X
j

qj

Z
fjd

3υ

j =
X
j

qjnjVj =
X
j

qj

Z
fjυd

3υ

and the Lorentz force
a =

q

m
(E+ υ ×B)

Actually we don’t want to use the E retaining all the local effects of indi-
vidual particles. We want a smoothed out field. Ensemble averaged E.
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Evaluate

∇υ · a = ∇υ · q
m
(E+ υ ×B) = q

m
∇υ · (υ ×B)

=
q

m
B·(∇υ × υ) = 0

So RHS is zero. However, in the use of smoothed out E we have ignored
local effect of one particle on another due to the graininess. This is collisions.

Summary:
Coupled to Vlasov equation for each particle species we have Maxwell’s equa-

tions.
Vlasov-Maxwell Equations

∂fj
∂t

+ υ · ∂fj
∂r

+
qj
mj
(E+ υ ×B) · ∂fj

∂υ
= 0 (1)

∇×E = −∂B
∂t
; ∇×B = µ0j+

1

c2
∂E

∂t

∇ ·E =
ρ

0
; ∇ ·B = 0

Coupling is completed via charge & current densities

ρ =
X
j

qjnj =
X
j

qj

Z
fjd

3υ

j =
X
j

qjnjVj =
X
j

qj

Z
fjυd

3υ

Describe phenomena in which collisions are not important, keeping track of
the (statistically averaged) particle distribution fucntion.
Plasma waves are the most important phenomena covered by the Vlasov-

Maxwell equations.
6-dimensional, nonlinear, time-dependent, integro-differential equations!
Boltzmann Equation

∂f

∂t
+ υ · ∂f

∂r
+ a · ∂f

∂υ
= (

∂f

∂t
)collisions

When there collisions with neutral atoms, the collision term can be approx-
imated by

(
∂f

∂t
)c =

fn − f

τ
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where fn is the distribution function of the neutral atoms, and τ is a constant
collision time. This is called a Krook collision term. When there are Coulomb
collisions,

∂f

∂t
+ υ · ∂f

∂r
+ a · ∂f

∂υ
= − ∂

∂υ
· (f < ∆υ >)+

1

2

∂2

∂υ∂υ
: (f < ∆υ∆υ >)

This is called the Fokker-Planck equation, it takes into account binary Coulomb
collisions only. Here ∆υ is the change of velocity in a collision. The first term
describes the frictional force slowing down fast particles and accelerating slow
ones. The negative divergence in velocity space describes a narrowing of the
distribution. In the second term < ∆υ∆υ > /∆t is a coefficient of diffusion
in velocity space. This term then describes the fact that a narrow velocity
distribution (e.g. a beam) will broaden as a result collisions. The two terms thus
operate in opposite senses, and are in balance for an equilibrium (Maxwellian)
distribution.
Vlasov Equation = Boltzmann Eq without collisions.
For electromagnetic forces:

∂f

∂t
+ υ · ∂f

∂r
+

q

m
(E+ υ ×B) · ∂f

∂υ
= 0

1.6 General Properties of the Vlasov Model:

1. Distribution function is constant along particle orbit in phase space:

d

dt
f = 0

d

dt
f =

∂f

∂t
+

dr

dt
· ∂f
∂r
+

dυ

dt
· ∂f
∂υ

It simply expresses conservation of particles in phase space with mothion
due to the smooth self-consistent fields. Note the density in real space,

R
d3υf,

can vary.

2. The Vlasov equation is time reverible:
Here we simply note that the time reversal transformation,

t → −t
r → r

υ → −υ
E → E

B → −B
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This leaves the equation invariant. This means that starting from some
initial state and evolving by the Vlasov model, at any point in time if one
reversed the velocity of all the pariticles (which would make the magnetic field,
B, reverse) the system would retrace its steps to the initial state. There is
no tendency to relax to a thermodynamically favoriable state, or distribution
fucntion. The system evolves with reversible, if complicated, dynamics. This
point is emphasized further by the following property.

3. Entropy is Conserved in the Vlasov Model:
The basic formula for the entropy in non-equlibrium systems is:

S = −
Z

d3rd3υf ln f

This a form familiar to students of information theroy, since this is, effec-
tively, the formula,

P
i Pi log2 Pi, that Shannon found for the information, in

bits, of some signal.

dS

dt
= −

Z
d3rd3υ{∂f

∂t
+ ln f

∂f

∂t
}

=

Z
d3rd3υ{υ · ∂f

∂r
+ a · ∂f

∂υ
+ ln f(υ · ∂f

∂r
+ a · ∂f

∂υ
)}

=

Z
d3rd3υ{υ · ∂

∂r
(f ln f) + a · ∂f

∂υ
(f ln f)}

=

Z
d3rd3υ{ ∂

∂r
· (υf ln f) + ∂f

∂υ
· (af ln f)}

=

Z
d3υ

Z
dAr·(υf ln f) +

Z
d3r

Z
dAυ · (af ln f)} (2)

The last term is zero, assuming that the distribution function, f, vanishes,
as υ →∞. The first term is likewise is zero for a bounded system containing a
finite number of particles, so that,

dS

dt
= 0

Notes Eq. 2 represent flows of entropy across the boundaries of the system,
both in space and velocity. As long as the system boundary conditions prohibit
entropy exchange with the outside world, entropy will be conserved.
These properties further emphasize that the strict Vlasov plasma, although

capable of undergoing extremely complex behavior, is nonetheless reversible. If
the particles were truned around, υ → −υ, the system would evolve exactly to
its initial state.

1.7 The Equivalence of Kinetic Theory and Orbit Theory
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The collisionless Boltzman equation (Vlasov) is the root of kinetic theory

∂f

∂t
+ υ · ∂f

∂r
+
F

m
· ∂f
∂υ

= 0

The base equation of orbit theory is Newton’s law:

m
d2r

dt2
= F

Being a second order differential equation in there dimension, the general so-
lution of Newton’s equaiton must contain six constants of intergration, α1, ..., α2.
We write the solution

r = r(α1, ..., α6, t)

υ = υ(α1, ..., α6, t)

In principle, we can formally solve these six scalar equations for the αi :

αi = αi(r,υ, t), i = 1− 6
Now any arbitray function of the αi, f = f(α1, ..., α6), is a solution of the

Vlasov equation above:

d

dt
f(α1, ..., α6) =

X
i

∂f

∂αi

dαi
dt

= 0

The result is identically zero because the α0is are constants.
Thus the general soltuon of the Valsov equation is an arbitray function of

the integrals of Newton’s law, and the two approaches are equivalent. It is
sometimes called Jean’s theorem.

1.8 Derivation of the Fluid Equations

The fluid equations we have beening using are simply moments of the Boltzmann
(or Vlasov if collisions are ignored) equations. For any A(υ), the hydrodynamic
evolution equation for < A(υ) > will be given byZ

A(υ)[
∂f

∂t
+ υ · ∂f

∂r
+

q

m
(E+ υ ×B) · ∂f

∂υ
]d3υ = 0

Letting A(υ) = υ0 = 1,mυ,mυυ/2 we obtain, respectively:

• The equation for the density: equation of continuity
• The equation for the momentum density: equation of motion

• The equation for the kinetic energy density: heat flow equation (energy
equation)
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1.8.1 Equation of continuity

Let A(υ) = 1 :Z
∂f

∂t
dυ +

Z
υ ·∇fdυ + q

m

Z
(E+ υ ×B) · ∂f

∂υ
dυ =0

The first term gives Z
∂f

∂t
dυ =

∂

∂t

Z
fdυ =

∂n

∂t

Since υ is an independent variableZ
υ ·∇fdυ =∇·

Z
υfdυ =∇ · (nῡ) =∇ · (nu)

where the average u is the fluid velocity by definition.Z
E·∂f

∂υ
dυ =

Z
∂

∂υ
· (fE)dυ =

Z
S∞

fE·dS
The perfect divergence is integrated to give the value of fE on the surface at
υ = ∞. This vanishes if f → 0 faster than υ−2 as υ → ∞, as is necessary for
any distribution with finite energy.Z

(E+ υ ×B) · ∂f
∂υ

dυ =

Z
∂

∂υ
· (fυ ×B)dυ−

Z
f
∂

∂υ
× (υ ×B)dυ =0

The first integral can again be converted to a surface integral. For a Maxwellain,
f falls faster than any power of υ as υ →∞, and the integral therefore vanishes.
The second integral vanishes because υ ×B is perpendicular to ∂

∂υ . Hence, we
get the equation of continuity:

∂n

∂t
+∇ · (nu) =0

1.8.2 Fluid equation of motion

Let A(υ) = mυ :

m

Z
υ
∂f

∂t
dυ+m

Z
υυ ·∇fdυ+q

Z
υ(E+ υ ×B) · ∂f

∂υ
dυ =0

The first term gives

m

Z
υ
∂f

∂t
dυ =m

∂

∂t

Z
υfdυ =m

∂

∂t
(nu)

The third integral can be writtenZ
υ(E+ υ ×B) · ∂f

∂υ
dυ =

Z
∂

∂υ
· [fυ(E+ υ ×B)]dυ

−
Z

fυ
∂

∂υ
· (E+ υ ×B)dυ

−
Z

f(E+ υ ×B) · ∂

∂υ
υdυ
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The first two integrals vanish for the same reasons as before, and ∂υ/∂υ is just
the identity tensor

←→
I . We therefore have

q

Z
υ(E+ υ ×B) · ∂f

∂υ
dυ =− q

Z
(E+ υ ×B)fdυ =− qn(E+ u×B)

Finally, to evaluate the second integral,Z
υυ ·∇fdυ =

Z
∇ · (fυυ)dυ = ∇ ·

Z
fυυdυ =∇ · nυυ

Now we may separate υ into the average (fluid) velocity u and a thermal
velocity w:

υ = u+w

Since u is already an average, we have

∇ · nυυ = ∇ · (nuu) +∇ · nww+ 2∇ · (nuw)
The average w is obviously zero. The quantity mnww is precisely what is

meant by the stress tensor
←→
P :

←→
P ≡ mnww

∇ · (nuu) = u∇ · (nu)+n(u ·∇)u
Therefore:

m
∂

∂t
(nu)+mu∇ · (nu)+mn(u ·∇)u+∇·←→P − qn(E+ u×B) = 0

Combining the first two terms with the help of equation of continutiy, we
finally obtain teh fluid equation of motion:

mn[
∂u

∂t
+ (u ·∇)u] = qn(E+ u×B)−∇·←→P

To treat the flow of energy, we may take A(υ) = mυυ/2. The equation p˜ργ

is a simple form of the heat flow equation for themal conductivity κ = 0.
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