
1 The Landau Problem and Collisionless Dissi-
pation

The basic effect that plasma waves damp, even in the absence of collisions was
first discovered theoretically by Landau and is referred as Landau damping.

1.1 Linearized Electron Plasma Waves: Vlasov’s Solution

As an elementary illustration of the use of the Vlasov equation, we shall derive
the dispersion relation for electron plasma oscillations, which we treated from
the fluid point of view before.
It is evident from the last term in that the Vlasov-Maxwell model equations

are nonlinear and hence in general difficult to solve. We focus our attention
on the solution of these equations for small-amplitude perturbations abourt a
given uniform equilibrium so that the equations can be reduced to linear partial
differential equations. These form the basis for studying the kinetic theory of
linear waves and instabilities in plasmas.
In zero order, we assume a uniform plasma with a distribution f0,and Let

B0 = E0 = 0.
Linearize the Vlasov Eq by supposing

f(r,v,t) = f0(υ) + f1(r,v,t), f1 small

The first-order Vlasov equation for electrons is

∂f1
∂t

+ v ·∇f1 − e

m
E1 · ∂f0

∂t
= 0

As before, we assume the ions are massive and fixed and that the waves are
plane wave in the x-direction

f1 → ei(kx−ωt)

Then

−iωf1 + ikυxf1 − e

m
Ex

∂f0
∂υx

= 0

Solution:

f1 =
ieEx

m

∂f0/∂υx
ω − kυx

Poisson’s equation gives

0∇ ·E1 = ik 0Ex = −e
ZZZ

f1d
3υ
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Substituting for f1 :

1 = − e2

km 0

ZZZ
∂f0/∂υx
ω − kυx

d3υ

A normalized fucntion
f̂0 = f0/n0

If f0 is a Maxwellian or some other factorable distribution, the integrations
over υy, υz can be carried out easily. What remains is the one dimensional
distribution fucntion f̂0(υx).
The dispersion relation is, therefore,

1 =
ω2p
k2

Z
∂f̂0/∂υ

υ − (ω/k)dυ (1)

where we have dropped the subscript x.
Here f̂0 is understood to be a one-dimensional distribution fucntion, the

integrations over υy, υz having been made.
To give an example of this dispersion, cosider the properties of plasma waves

in a thermal equilibrium plasma. In this case,

f̂0 =
1√
πυe

exp(−υ2/υ2e)

where υe =
p
2KTe/me, is the electron thermal velocity. For waves with

phase velocitites much larger than the electron thermal speed, ω/k >> υe,
kυe/ω will be samll for most velocities. [We previously argued that cold-plasma
is valid if ω/k >> υe]. The enequality, kυe/ω << 1, fails only on the tail of the
distribution where the number of particles [and, therefore, the contribution to
the integral] is exponentially samll. We then therefore expand,

1

υ − (ω/k) = −
k

ω

1

1− kυ/ω
= − k

ω
[1 +

kυ

ω
+ (

kυ

ω
)2 + (

kυ

ω
)3 + ...] (2)

1 =
ω2p
k2

Z
dυ

∂f̂0
∂υ
(− k

ω
)[1 +

kυ

ω
+ (

kυ

ω
)2 + (

kυ

ω
)3 + ...]

=
ω2p
k2

Z
dυ

∂f̂0
∂υ
(− k

ω
)[
kυ

ω
+ (

kυ

ω
)3 + ...]

where we have used the odd parity of, ∂f̂0∂υ , in obtaining the last expression.
Fially we integrate by parts and evaluted to give,

1 =
ω2p
ω2
+ 3

ω2pk
2

ω4
ῡ2
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or

ω2 = ω2p +
ω2p
ω2
3KTe
m

k2

The dispersion relation can be found by iteration, first letting, ω2 = ω2p, and
then evalutatin the correction term at, ω2 = ω2p.
This yields,

ω2 = ω2p(1 +
3KTe
m

k2)

which is the Bohm-Gross dispersion relation.
We have previously obtained this result from fluid theory assuming one-

dimensional adiabatic compression (γ = (D + 2)/D = 3) for an equation of
state. The only proof of such an assumption, however, can come from kinetic
theroy.
In deriving the Bohm-Gross dispersion relation, we have been somewhat

glib about the mathematical expansion 2, since we have ignored extirely the
singularity at υ = ω/k. Until we hace some method of resolving this potential
contribution to the intergral, there is really no basis for the approximations
that we were made. In essence, although this was not even motioned, we used
the Vlasov prescription to resolve this singularity. Vlasov made a well-defined
problem by replacing the singular funcition by its principal value, or, formally
letting,

1

υ − (ω/k) → P
1

υ − (ω/k)
where the principal value operation, P, is defined according to,

Z ∞
−∞

g(u)P
1

u− u0
du = lim

→0

Z
u0−

−∞
g(u)

1

u− u0
du+ lim

→0

Z ∞
u0+

g(u)
1

u− u0
du

Here g(u) is assumed to be analytic at, u = u0. The limit then exists and is
finite. One can easily see this by evaluating the (singular) contributions in the
vicinity of, u = u0, by letting g(u) = g(u0)

Z ∞
−∞

g(u)P
1

u− u0
du → g(u0)

Z
P

1

u− u0
du

= g(u0)[lim→0

Z
u0− 1

u− u0
du+ lim

→0

Z
u0+

1

u− u0
du]

= g(u0) lim→0
[ln − ln ] = 0

The sigular contributions have opposite signs and cancel. The singularity
can be resolved mathematically, by the application of the principal value. This
resolution was tacitly assumed in our evalution of the dispersion relation above.
It is Vlasov’s solution.
Unfortunately, this resolution of the singularity is not uniqure. THere are

infinitely many resolutions (all equally good mathematically) which would give
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different dispersion relations. The principal value prescription is completely ad
hoc and without any physical basis. It would therefore be surprising if this
particular choice was correct. In general, it is not. In erring, Vlasov missed one
of the most important phenomenon in plasma physics - a damping arising from
the proper resolution of this pole.

1.2 Brief Review of Integrals in the Complex Plane

1. Cauch’s Theorem:
Let f(z) be an analytic function over some region R of the complex plane,

and let S be a simple closed curve whose interior is within R. ThenI
S

f(z)dz = 0

An equivalent statement of the theorem, which is more useful in practice, is
that a contour integral connecting two points may be deformed at will into any
region of the complex plane where the integrand in analytic. As long as the end
points remain fixed the value of the integral is unchanged.

2. Cauchy’s Residue Theorem:
Let f(z) be analytic and single-valued everywhere inside a closed contour C,

except for a finite number of isolated singularites, then,I
C

f(z)dz = 2πi
X

poles zi

res f(zi)

where the contour, C, is taken in the counterclockwise direction.

For a simple pole at, z = z0, the residue, res f(zi), is given by

res f(zi) = lim
z→z0

(z − z0)f(z0)

1.3 Landau’s Solution

The integral in 1 was treated properly by Landau. Since in practice ω is almost
nerver real; waves are usually slightly damped by collisions or are amplified
by some instablitiy mechanism and the velocity υ is a real quanity, one might
think that the singularity would be of now concern. Landau found that even
though the singularity lies off the path of integration, its presence introduces
an important modification to plamma wave dispersion reation - an effect not
predicted by the fluid theory.
Consider an initial value problem in which the plasma is given a sinusodal

perturbation, and therefore k is real. If the perturbation grows or decays, ω
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Figure 1:

will be complex. The integral in 1 must be treated as a contour integral in the
complex υ. Normally, one would evaluate the line integral along the real υ axis
by the residue theorem:Z

C1

Gdυ +

Z
C2

Gdυ = 2πiR(ω/k)

Where G is the integrand, C1 is the path along the real axis, C2 is the
semicircle at infinity, and R(ω/k) is the residue at ω/k. This works if the
integral over C2 vanishes. Unfortunately, this does not happen for a Maxwellian
distribution, which contains the factor

exp(−υ2/υ2e)

This factor becomes large for υ → ±i∞, and the contribution from C2 cannot
be neglected. Landau showed that when the problem is properly treated as an
initial value problem the correct contour to use is the curve C1 passing below
the singularity.
Although an exact analysis of this problem is complicated, we can obtain an

an approximate dispersion reation for the case of large phase velocity and weak
damping. In this case, the pole ω/k lies near the real υ axis. The contour pre-
scribed by Landau is then a straight line along the Re(v) axis with a semicircle
around the pole.

In going around the pole, one obtains 2πi times half the residue there. Then
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Eq 1 becomes

1 =
ω2p
k2
[P

Z
∂f̂0/∂υ

υ − (ω/k)dυ + iπ
∂f̂0
∂υ
|υ=ω/k]

The first term of RHS is Vlasov’s solution as we evalutated before to give the
Bohm-Gross dispersion relation. We now return to the imaginary term (second
term of RHS). In evaluating this small term, it will be sufficiently accurate
to neglect the thermal correction to the real part of ω and let ω2 ' ω2p. The
principal value of the integral is approximately k2/ω2.

1 =
ω2p
ω2
+ iπ

ω2p
k2

∂f̂0
∂υ
|υ=ω/k

ω2(1− iπ
ω2p
k2

∂f̂0
∂υ
|υ=ω/k) = ω2p

Treating the imaginary term as small,

ω = ωp(1 + i
π

2

ω2p
k2

∂f̂0
∂υ
|υ=ω/k)

For a Maxwellian distribution

f̂0 = (πυ
2
e)
−1/2 exp(−υ

2

υ2e
)

∂f̂0
∂υ

= (πυ2e)
−1/2(

−2υ
υ2e

) exp(−υ
2

υ2e
)

= − 2υ√
πυ3e

exp(−υ
2

υ2e
)

We may approximate ω/k by ωp/k in the coefficient, but in the exponent we
must keep the thermal correction. The damping is then given by

Im(ω) ' −π
2

ω2p
k2

2ωp
k
√
πυ3e

exp(− ω2

k2υ2e
)

The difference between ω and ωp may not be important in the outside but
ought to be retained inside the exponential since

1

υ2e

ω2p
k2
[1 + 3

KT

m

k2

ω2p
] =

ω2p
υ2ek

2
+
3

2

so

Im(ω) = −√πωp( ωp
kυe

)3 exp(− ω2p
υ2ek

2
) exp(−3/2)

or
Im(

ω

ωp
) = −0.22√πp(

ωp
kυe

)3 exp(
−1

2k2λ2D
)

Since Im(ω) is negative, there is a collisionless damping of plasma waves;
this is called Landau damping.
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1.4 Intuitive Physical Demonstration of Landau Damping

(Landau Damping without complex variables!)
We show by a direct calculation that net energy is transforred to electrons.
Suppose there exists a longitudianl wave

E = E cos(kz − ωt)ẑ

Equations of motion of a particle

dυ

dt
=

q

m
E cos(kz − ωt)

dz

dt
= υ

Solve these assuming E is small by perturbation expansion υ = υ0 + υ1 +
..., z = z0(t) + z1(t) + ...
Zeroth order:

dυ0
dt

= 0⇒ υ0 = const, z0 = zi + υ0t

where zi = const is the initial position.

First Order:

dυ1
dt

=
q

m
E cos(kz0 − ωt) =

q

m
E cos(k(zi + υ0t)− ωt)

dz1
dt

= υ1

Integrate:

υ1 =
qE

m

sin(kzi + kυ0t− ωt)

kυ0 − ω
+ const.

Take initial conditions to be υ1|t=0 = 0
Then

υ1 =
qE

m

sin(kzi +∆ωt)− sin(kzi)
∆ω

where ∆ω ≡ kυ0 − ω

z1 =
qE

m
[
cos kzi − cos(kzi +∆ωt)

∆ω2
− t
sin(kzi)

∆ω

(using z1(0) = 0)

2nd Order (needed to get energy right)
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dυ2
dt

=
qE

m
{cos(kzi + kυ0t− ωt+ kz1)

− cos(kzi + kυ0t− ωt)}
=

qE

m
kz1{− sin(kzi +∆ωt)} (kz1<<1)

Now the gain in kinetic energy of the particle is

1

2
mυ2 − 1

2
mυ20 =

1

2
m{(υ0 + υ1 + υ2 + ...)2 − υ20}

=
1

2
m{2υ0υ1 + υ21 + 2υ0υ2 + higher_order}

and the rate of increase of K.E. is

d

dt
(
1

2
mυ2) = m(υ0

dυ1
dt

+ υ1
dυ1
dt

+ υ0
dυ2
dt
)

We need to average this over space, i.e. over zi. This will cancel any compo-
nent that simply oscillates with zi

<
d

dt
(
1

2
mυ2) >=< υ0

dυ1
dt

+ υ1
dυ1
dt

+ υ0
dυ2
dt

> m

< υ0
dυ1
dt

>= 0

< υ1
dυ1
dt

>=<
q2E2

m2
[
sin(kzi +∆ωt)− sin kzi

∆ω
cos(kzi +∆ωt)] >

=
q2E2

m2
<
sin∆ωt

∆ω
cos2(kzi +∆ωt) >

=
q2E2

m2

1

2

sin∆ωt

∆ω

< υ0
dυ2
dt

>= −q
2E2

m2
kυ0 < (

cos kzi − cos(kzi +∆ωt)
∆ω

− t
sin kzi
∆ω

) sin(kzi +∆ωt) >

= −q
2E2

m2
kυ0 < (

sin∆ωt

∆ω2
− t
cos∆ωt

∆ω
) sin2(kzi +∆ωt) >

=
q2E2

m2

kυ0
2
[−sin∆ωt

∆ω2
+ t
cos∆ωt

∆ω
]

Hence

<
d

dt
(
1

2
mυ2) >=

q2E2

2m
[
sin∆ωt

∆ω
− kυ0

sin∆ωt

∆ω2
+ kυ0t

cos∆ωt

∆ω
]

=
q2E2

2m
[−ω sin∆ωt

∆ω2
+

ωt

∆ω
cos∆ωt+ t cos∆ωt]
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This is the space-averaged power into particles of a specific velocity υ0. We
need to integrate over the distribution funcition. A trick identity helps:

−ω sin∆ωt
∆ω2

+
ωt

∆ω
cos∆ωt+ t cos∆ωt =

∂

∂∆ω
(
ω sin∆ωt

∆ω
+ sin∆ωt)

=
1

k

∂

∂υ0
(
ω sin∆ωt

∆ω
+ sin∆ωt)

Hence power per unit volume is

P =

Z
<

d

dt
(
1

2
mυ2) > f(υ0)dυ0

= −q
2E2

2mk

Z
(
ω sin∆ωt

∆ω
+ sin∆ωt)

∂f

∂υ0
dυ0

As t becomes large sin∆ωt = sin(kυ0 − ω)t becomes a rapidly oscillating
function of υ0. Hecne second term of integrand contributes negligibly and the
first term ∝ ω sin∆ωt

∆ω = sin∆ωt
∆ωt ωt

becomes a highly localized, delta-function-like quantity.

sinx

x

1050-5-10

1

0.75

0.5

0.25

0

x

y

x

y

That enables the rest of the integrand to be evaluated just where ∆ω =
0 (i.e. kυ0 − ω = 0)
So

P = −q
2E2

2mk

ω

k

∂f

∂υ
|ω/k

Z
sinx

x
dx

x = ∆ωt = (kυ0 − ω)t
and

R
sinx
x dx = π so

P = −E2 πq
2ω

2mk2
∂f0
∂υ
|ω/k
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Figure 2:

We have shown that there is a net transfer of energy to particles at the
resonant velocity ω/k from the wave. (Positive if ∂f0

∂υ | is negative)

Physical Picture
∆ω is the frequency in the particles (unperturbed) frame of reference, or

equivalently it is kυ00 where υ
0
0 is particle speed in wave frame of reference. The

latter is easier to deal with. ∆ωt = kυ00t is the phase the particle travels in time
t. We found that the energy gain was of the formZ

sin∆ωt

∆ωt
d(∆ωt)

This integrand becomes small (and oscillatory) for ∆ωt >> 1. Physically,
this means that if particle moves through many wavelengths its energy gain is
small. Dorminant contribution is form ∆ωt << π. There are particles that
move throught less than 1/2 wavelength during the period under consideration.
These are the resonant particles.

Particles moving slightly faster thatn wave are slowed down. This is a second-
order effect. Some particles of this υ0 group are being accelerated (A) some
slowed (B). Becauses A’s are then going faster, they speed less time in the
‘down’ region. B’s are slowed; they spend more time in up region. Net effect:
tendency for particle to move its speed toward that of wave.

Particle moving slightly slower than wave are speeded up. (some argument).
But this is only true for particles that have ‘caught the wave’.

Summary: Resonant particles’ velocity is drawn toward the wave phase ve-
locity.

Is there net energy when we average over both slower and faster particles?
Depends which type has most.

Picutre: Net particle energy gain, Wave Damped
Net particle energy loss, Wave Amplified

Our complex variables wave treatment and our direct particle energy calcula-
tion give consistent answers. To show this we need to show energy conservation.
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Energy density of wave:

W =
1

2
[
1

2
0|E2|+ n

1

2
m|υ2|]

1/2: from average of sin2
1
2 0|E2| : electrostatic
n12m|υ2| : Particle Kinetic

Magnetic wave energy zero for a longitudinal wave, we showed in Cold plasma
treatment

υ ' qE

−iωm
Hence

W ' 1

2
0E

2

2
[1 +

ω2p
ω2
] (again electrons only)

When the wave is damped, it has imaginary part of ω, ωi and

dW

dt
=W

1

E2
dE2

dt
= 2ωiW

Conservation of energy requires that this equal minus the particle energy
gain rate, P, Hence

ωi =
−P
2W

=
E2 πq

2ω
2mk2

∂f0
∂υ |ω/k

0E2

2 [1 +
ω2p
ω2 ]

= ω2p
π

2

ω

k2
1

n

∂f0
∂υ
|ω/k

× 2

1 +
ω2p
ω2

so for waves such that ω ' ωp, which is the dispersion relation to lowest
order, we get

ωi = ω2p
π

2

ωr
k2
1

n

∂f0
∂υ
|ωr/k

This exactly agrees with the damping calculatied from the complex disper-
sion relation using the Vlasov equation.

This is the Landau damping calculation for longitudinal waves in a (mag-
netic) field-free plasma. Strictly, just for elecron plasma waves.
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