Plasma Physics Fall 2002 Problem Set 6

Due Date: Monday, Dec. 16

- **1.** A pulsar emits a broad spectrum of electromagnetic radiation, which is detected with a receiver tuned to the neighborhood of f=80 MHz. Because of the dipersion in group velocity casused by the interstellar plasma, the observed frequency during each pulse drifts at a rate given by df/dt=-5 MHz/sec.
 - **a.** If the interstellar magnetic field is negligible and $\omega^2 >> \omega_p^2$, show that

$$\frac{df}{dt} \simeq -\frac{c}{x} \frac{f^3}{f_p^2}$$

where f_p is the plasma frequency and x is the distance of the pulsar.

- **b.** If the average electron density in space is 2×10^5 m⁻³, how away is the pulsar?
- **2.** The R-Wave in the low-frequency region $\omega < \omega_c$ is called the whistler mode. Use the R-wave dispersion relationship

$$\frac{c^2k^2}{\omega^2} = 1 - \frac{\omega_p^2/\omega^2}{1 - \omega_c/\omega}$$

to show:

- (a) The whistler mode has maximum phase velocity at $\omega = \omega_c$ and that this maximum is less than c (the velocity of light)
- **(b)** The group velocity of the whistler mode is proportional to $\omega^{1/2}$.
- **3.** The momentum equation for electrons in the presence of collisions with neutral particles is given by

$$mn\frac{d\mathbf{v}}{dt} = -en(\mathbf{E} + \mathbf{v} \times \mathbf{B}) - \nabla p - mnv_e(\mathbf{v} - \mathbf{u})$$

where v_e is the momentum-exchange, large angle collision frequency. For

simplicity, assume that u = 0

- **a.** Derive the linearized dispersion relationship of electromagnetic (transverse) waves in an unmagnetized plasma in the presense of collisions.
- **b.** Assuming the ω is real and $k = k_{\rm Re} + ik_{\rm Im}$, from the dispersion relatioship deduce $k_{\rm Re}$, the propagation wavenumber and $\delta = k_{\rm Im}^{-1}$, the damping length (skin depth).
- **c.** Find simplified expressions for δ in the limits (i) $v_e << \omega << \omega_{pe}$ (ii) $\omega << v_e << \omega_{pe}$
- **d.** Calculate numerically the skin depth (in cm) in a plasma where $\omega/2\pi = f = 10^9$ Hz, $v_e = 3 \times 10^5$ sec⁻¹, and the density $n = 2 \times 10^{14}$ cm⁻³.