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Abstract The global distribution of magnetic field and other plasma parameters on the
source surface, which we set at 2.5 solar radii, is important for coronal and heliospheric
modeling. In this article, we introduce a new data-driven self-consistent method to obtain
the global distribution of different parameters. The magnetic and polarized brightness (pB)
observations are used to derive the magnetic field and electron density on the source surface,
respectively. Then, an artificial neural network (ANN) machine learning technique is applied
to establish an empirical relation among the solar wind velocity, the magnetic field proper-
ties, and the electron density. The ANN is trained with global observational data, and is
validated to be more reliable than the Wang–Sheeley–Arge (WSA) model for reconstructing
the solar wind velocity, especially at high latitudes. The plasma temperature distribution is
derived by solving a simplified one-dimensional (1D) magnetohydrodynamic (MHD) equa-
tion system on the source surface. Using the method in this study we can obtain the global
distribution for all the parameters self-consistently based on magnetic and polarized bright-
ness observations. The modeling results of four Carrington rotations from different solar
cycle phases are presented to validate the method.

Keywords Source surface · Coronal magnetic field distribution · Coronal polarized
brightness distribution · Interplanetary scintillation · Artificial neural network technique

1. Introduction

The source surface is an imaginary spherical shell in the corona, where the solar wind veloc-
ity and the magnetic field are all assumed to become radial (Altschuler and Newkirk, 1969;
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Schatten, Wilcox, and Ness, 1969). The typical height of the source surface is 2.5 solar radii,
because this value can best match the magnetic field polarity observed at 1 AU (Hoeksema,
Wilcox, and Scherrer, 1983). The solar wind originating in the Sun reaches the Earth a few
days later after crossing the source surface. Therefore, the study of the magnetic field and
plasma properties on the source surface is significant for the prediction of the characteristics
of the space environment near the Earth.

On one hand, the knowledge of the global distribution of the magnetic field and plasma
parameters, such as the number density, flow velocity, and plasma temperature on the source
surface is important for determining the initial boundary conditions of three-dimensional
(3D) magnetohydrodynamic (MHD) models. Many previous studies have shown that more
physical and realistic initial boundary conditions could evidently improve the performance
of the coronal and heliospheric MHD models (Feng et al., 2010, 2012; Feng, Ma, and Xiang,
2015; Hayashi, 2005; Hayashi et al., 2006; Jackson et al., 2015; Kim et al., 2014; Odstrcil,
2003; Shen et al., 2007, 2018; Wiengarten et al., 2013). On the other hand, the characteris-
tics of the distributions of the parameters on the source surface could be mapped to 1 AU
by computational resource-saving methods to give space weather predictions quickly (Riley
and Lionello, 2011). Although these methods are much simpler, some of them can have a
comparable forecasting performance to the complicated MHD models (Owens et al., 2008;
Riley et al., 2006). For example, the Wang–Sheeley–Arge (WSA) model (Wang and Shee-
ley, 1990; Arge and Pizzo, 2000; Arge et al., 2003), which takes advantage of the negative
correlation between the solar wind speed and the expansion factor (fs ) of the magnetic field
at the source surface can predict the solar wind speed at 1 AU properly. This model has
been operational at the Space Weather Prediction Center of the National Oceanic and Atmo-
spheric Administration (SWPC/NOAA). Furthermore, the global structure of ambient solar
wind parameters can impact on the modeling and forecasting of more geo-effective tran-
sient phenomena, such as coronal mass ejections (CMEs) and shocks (Dryer et al., 2004;
Fry et al., 2003; Gopalswamy et al., 2001; Lugaz, Manchester, and Gombosi, 2005; Shen
et al., 2013, 2014; Zhao and Dryer, 2014).

Although there are no in situ observations near the Sun due to the limitations of space
measurements, a lot of research in this topic is still being performed with remote obser-
vations and theoretical analyses. The coronal magnetic field is one of the most frequently
studied parameters in heliophysics. Many coronal magnetic field models have been devel-
oped based on photospheric magnetograms, including potential field models, force-free field
models, and coronal MHD models (Linker et al., 1999; Mikic et al., 1999; Riley et al., 2011;
Jiang and Feng, 2013). A recent review by Wiegelmann, Petrie, and Riley (2017) discussed
all of these approaches and pointed out their advantages and disadvantages. The potential
field source-surface (PFSS) model is one of the most widely used. It was first developed
by Altschuler and Newkirk (1969) and Schatten, Wilcox, and Ness (1969). Then several
studies refined the PFSS model. Levine, Schulz, and Frazier (1982) and Schulz, Frazier, and
Boucher (1978) studied the effects of a nonspherical source surface. Zhao and Hoeksema
(1995) added the effects of current sheets outside the source surface to build the current
sheet source-surface (CSSS) model. Arden, Norton, and Sun (2014) and Lee et al. (2011)
studied the effects of using different source-surface radii. However, the original PFSS model
still remains commonly used and its performance is comparable with that of other models
(Riley et al., 2006).

The coronal electron density structure is usually deduced from the observation of white-
light brightness according to the theory of Thomson scattering. The white-light brightness
of the corona could only be measured during total solar eclipses in the past, while now there
are regular observations with the help of coronagraphs. A widely used spherically symmetric
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inversion method of the coronal electron density was first introduced by Van de Hulst (1950)
and was implemented to estimate the density along radial profiles within coronal holes or
streamers. Then this method was used to study the two-dimensional (2D) or 3D distribution
of the coronal electron density (Quémerais and Lamy, 2002; Wang and Davila, 2014). Frazin
and Janzen (2002) developed a solar rotational tomographic approach to obtaining the 3D
coronal density. With the high-cadence and multipoint white-light observations provided by
recent advanced coronagraphs, some other 3D tomography methods have been developed
to reconstruct the coronal density (Kramar et al., 2014; Morgan, 2015; Patoul, Foullon,
and Riley, 2015). There are also some studies deriving the coronal density using coronal
magnetic field structures (Guhathakurta, Holzer, and Macqueen, 1996; Wang, Young, and
Muglach, 2014).

The global structure of the solar wind flow velocity can be obtained from interplanetary
scintillation (IPS) observations at the Institute for Space-Earth Environmental Research of
Nagoya University. The institute has provided global velocity maps on the source surface
for many years by using IPS measurements and tomographic analysis (Kojima et al., 2007;
Tokumaru et al., 2010). The IPS measurements have also been used by some solar wind
MHD models as boundary conditions (Hayashi et al., 2003; Hayashi, Tokumaru, and Fujiki,
2016; Jackson et al., 2015). However, the ground-based IPS observations are not available
for every winter due to thick snowing at the observatories and the data often cannot cover
all the points on the source surface (Tokumaru et al., 2017).

The WSA model can give the velocity distribution based on an empirical function, which
derives the solar wind speed from both the magnetic field expansion factor (fs ) and the min-
imum angular distance (θb) between an open field line footpoint and its nearest coronal hole
boundary (Riley, Linker, and Arge, 2015). Since the photospheric magnetic field is regularly
measured by many space-based or ground-based instruments, the velocity distribution could
always be obtained using the WSA model. However, the empirical function of the WSA
model was derived from in situ observations only in the ecliptic plane at 1 AU (Arge and
Pizzo, 2000). Thus, using the WSA function to deduce the global velocity distribution might
have uncertainties, especially at high latitudes.

Most of the previous studies obtain the global structure of different solar wind parameters
individually from only one kind of observation. For example, the WSA model determines
the solar wind velocity using only magnetic observations. Strachan et al. (2012) studied the
evolution of plasma parameters on the coronal source surface during solar minimum by an-
alyzing data from the Solar and Heliospheric Observatory (SOHO). They produced global
maps of outflow velocities and densities on the source surface using the UV and white-light
data observed by the Ultraviolet Coronagraph Spectrometer (UVCS) and the Large Angle
Spectroscopic Coronagraph (LASCO), respectively. Nevertheless, a few efforts have been
made to construct the global distribution of different parameters self-consistently from mul-
tiple observations. The distribution based on multi-observations can be more reliable and
can provide more realistic initial boundary condition to 3D MHD solar wind models. Wei
et al. (2003) conducted a preliminary study to construct the self-consistent distribution of
different parameters on the source surface based on the observations of both white-light
brightness and the photospheric magnetic field. They studied the global distribution of the
coronal mass flux for Carrington rotation (CR) 1742, and then used the result in a 1D MHD
model at the source surface to obtain the self-consistent distribution of different solar wind
parameters. Shen et al. (2010) and Shen, Feng, and Xiang (2012) improved the method of
Wei et al. (2003) by utilizing fs and θb in the WSA model and then analyzed the basic
characteristics of the global distribution for plasma and magnetic field on the source surface
during 136 CRs from four different phases of a solar cycle.
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In this article, we aim to introduce a new method that using observations of both, pho-
tospheric magnetic field and polarized brightness, obtains the self-consistent global distri-
bution of different solar wind parameters, including the magnetic field (B), electron den-
sity (N ), flow velocity (V ), and plasma temperature (T ) on the source surface. Our new
method applies the artificial neural network (ANN) machine learning technique to establish
the correlation among the solar wind velocity, the magnetic field properties, and the electron
density. The advantage of this correlation is that it is determined from global observations
at all latitudes and it involves more properties. After the learning process, we can obtain the
global distribution of V from both magnetic and polarized brightness observations when the
IPS observation is unavailable or incomplete. Then, we can deduce the distribution of T by
solving a simplified 1D MHD equation system at the source surface. Therefore, our results
for different parameters are self-consistent and all deduced from observational data.

The outline of this article is as follows. In Section 2, we describe the data and methods
that we apply for modeling the global distribution of B , N , V , and T using CR 2062 as
an example. In Section 3, firstly, we make a detailed analysis of V during CR 2062, by
comparing it with both observations and the WSA model. Then, we show the results of B ,
N , V , and T for four CRs from different solar cycle phases. In Section 4, we summarize the
results and discuss.

2. Data and Methods

In this section, we introduce the data and methods we apply to obtain the global distributions
of the solar wind magnetic field, electron density, flow velocity, and plasma temperature on
the source surface. CR 2062 is used in this section as an example.

2.1. Magnetic Field

The magnetic field structure is usually the most important property in solar-heliospheric
studies since it can control the structure and energy of plasma in the corona and the he-
liosphere. There are many coronal magnetic field models, as introduced in Section 1. In
this article, we choose the commonly used PFSS model, because it requires less computer
resources while working as well as more complicated models on reproducing large-scale
structures (Riley et al., 2006). The PFSS model has two basic assumptions: i) there is no
current in the corona between the solar surface (1 R�) and an imaginary spherical surface
called the source surface (Rss = 2.5 R�), namely the potential field assumption; ii) the mag-
netic field becomes purely radial at this source surface, which is considered the “source”
of the solar wind outflow. With these assumptions, a photospheric synoptic magnetogram
can be used to extrapolate the 3D magnetic field components of the vector B(r, θ,φ) at any
point in the region of 1 R� ≤ r ≤ Rss. Tóth, van der Holst, and Huang (2011) presented a
detailed explanation of the calculation process.

The time series of full-disk magnetograms can be combined to make a synoptic mag-
netogram, which gives the global magnetic field at the photosphere. Synoptic maps are
provided by many space or ground observatories, such as the Wilcox Solar Observa-
tory (WSO), the Michelson Doppler Imager (MDI) instrument on the Solar and Helio-
spheric Observatory (SOHO), the Helioseismic and Magnetic Imager on the Solar Dy-
namics Observatory (SDO) and the Global Oscillation Network Group (GONG) of the
National Solar Observatory (NSO). The quality of the input magnetogram may have influ-
ence on the accuracy of the PFSS model (Hayashi, Yang, and Deng, 2016; Liu et al., 2012;
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Figure 1 The 3D magnetic field
for CR 2062 deduced from the
PFSS model. The magnetic field
strength at the photosphere and at
the source surface is shown with
yellow-to-red and
purple-to-green colors,
respectively. The rainbow colors
used for the magnetic field lines
show the magnitude of fs , which
represents the degree of
super-radial expansion.

Riley et al., 2014). According to these studies, we choose the synoptic maps provided by
NSO/GONG (http://gong.nso.edu/) in this article.

After obtaining the coronal magnetic field strength using the PFSS model, we can derive
some other important properties by tracing field lines. The expansion factor (fs ) on the
source surface can be derived from the function

fs =
(

B0

Bss

)(
R�
Rss

)2

, (1)

where B0 and Bss are the magnetic field strengths at the photosphere and at the source
surface, respectively. The parameter fs measures the rate at which the flux tube expands
between the photosphere and the source surface, as compared with a purely radial expansion.
Thus, the flux tube expansion is super-radial where the value of fs is larger than 1.

Figure 1 presents the 3D magnetic field obtained using the PFSS model for CR 2062.
In this figure, B0 and Bss are shown with different colors to represent the distribution of
the magnetic field strength at the photosphere and at the source surface, respectively. A set
of magnetic field lines are also plotted to show the magnetic field structure between the
photosphere and the source surface. We can see that most of the open field lines come from
the polar regions and most of the closed field lines are located in the low latitude regions.
The various colors of the open field lines represent the magnitude of fs , which denotes the
degree of super-radial expansion. The rainbow colors from blue to red indicate that the fs

magnitudes vary from small to large. As we can see in Figure 1, the field lines starting from
the polar region will remain to be blue if they stay close to the radial direction, while they
will gradually turn into red if they bend to the equatorial region.

After tracing magnetic field lines, we can see the regions of open field lines as coronal
holes. The property θb can be obtained by calculating the minimum angular distance be-
tween an open field line footpoint and its nearest coronal hole boundary. The fs and θb are
both good indicators for the solar wind speed; they have been used in the WSA model for

http://gong.nso.edu/
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Figure 2 The distribution of coronal holes on the photosphere and the contour of θb on the source surface
for CR 2062. The magnetic field lines show the connection of the photosphere and the source surface. The
arrows indicate the direction of the magnetic field.

years. Riley, Linker, and Arge (2015) made some detailed analyses comparing these two
parameters.

In Figure 2, the distribution of coronal holes on the photosphere and the distribution
of θb values on the source surface are presented simultaneously. The coronal hole regions
are shown in red color and the closed field in blue. The border between the red and the
blue regions indicates the coronal hole boundary. The connection between the photosphere
and the source surface can be shown by drawing field lines. We drew some field lines that
cross the source surface at the equator and at 30 or 180 degree of Carrington longitude.
It is obvious that the smaller θb value at the source surface connects it with the location
closer to the coronal hole boundary at the photosphere, which is reasonable according to the
definition of θb .

We also introduce two other properties, since we will use them in Section 2.3 for de-
termining the solar wind velocity. One is the latitude difference between a point at the
source surface and the heliospheric current sheet (HCS). It can be understood as the mag-
netic latitude, noted as Lm. The relations of the HCS with the solar wind structure has been
studied in several articles (Hoeksema, Wilcox, and Scherrer, 1983; McComas et al., 2006;
Newkirk and Fisk, 1985). The other property is the latitude of a footpoint, noted as L0.
A recent study demonstrated that L0 can have a relation with the corresponding solar wind
velocity (Hofmeister et al., 2018).

Then, we have obtained six magnetic field properties from a PFSS model, Bss, B0, fs , θb ,
Lm, and L0. The global distribution maps of these properties on the source surface for CR
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2062 are summarized in Figure 3. These properties will be used to determine the solar wind
velocity in Section 2.3.

2.2. Electron Density

Since the coronal magnetic field is extrapolated from the photospheric observations with
some unphysical assumptions, the deduced magnetic field structure in the corona may be
not very accurate. The coronal density structure can be regarded as a tracer of the magnetic
field morphology, due to the plasma frozen-in effect in the corona (Wiegelmann, Petrie, and
Riley, 2017). Some studies have shown that the global distribution of the coronal electron
density derived from white-light observations can be used to optimize the coronal magnetic
field models (Kramar et al., 2014; Jones, Davila, and Uritsky, 2016; Everson and Dikpati,
2017) and provide more reliable initial conditions for solar wind modeling (Patoul, Foullon,
and Riley, 2015).

The observed white-light brightness contains three main components, including the in-
strumental stray light, the K-corona brightness, and the F-corona brightness. The K corona
represents the Thomson scattering of photospheric light by free electrons, while the F corona
arises from interplanetary dust scattering (Billings, 1966). Thus, the electron density can be
deduced from the K-corona brightness. However, it is difficult to separate the K-corona from
the F-corona in the total white-light brightness (Hayes, Vourlidas, and Howard, 2001). Since
the polarized contribution of the F-corona can be ignored in the low corona (Hayes, Vourli-
das, and Howard, 2001; Koutchmy and Lamy, 1985), the inversion of the coronal density is
usually based on the pB observations (Frazin and Janzen, 2002; Quémerais and Lamy, 2002;
Van de Hulst, 1950; Wang and Davila, 2014).

In this article, we apply a commonly used method developed by Van de Hulst
(1950) to invert the coronal density from the polarization-brightness observations. This
method has been implemented by a set of IDL routines in the Solar SoftWare (SSW,
http://www.lmsal.com/solarsoft/) library (Freeland and Handy, 1998). The pB data we use in
this study is from the SOHO/LASCO-C2 coronagraph; it can be downloaded from the in-
strument website (http://lasco-www.nrl.navy.mil/content/retrieve/polarize/). The LASCO pB

observations are made regularly once or twice a day. The pB images of LASCO-C2 has a
useful field-of-view (FOV) of about 2.2 to 6.0 R� with a resolution of 512 by 512 pixels.

Figure 4a presents the original LASCO-C2 pB image of 21 October 2007 at 21:05 UT,
which belongs to CR 2062. We can see the streamers are brighter on the east and west
limbs, while the polar regions are much darker. Figure 4b exhibits the values of the same
pB data, but the plot is transformed into polar coordinates, which are more convenient for
the inversion process. The horizontal axis is the position angle measured counterclockwise
from the north pole and the vertical axis is the radial distance from the solar center. Figure 4c
shows the values of the electron density deduced from the pB data. The comparison of
panels b and c indicates a good coincidence in the observed pB data and the inversed density.
We can see that the widths and locations of the streamers are coincident. The profiles of pB

and N at the source surface are shown simultaneously in Figure 4d. The profiles correspond
to the locations indicated by the dashed green and red lines in panels b and c, respectively.

The SSW routines can be used only to calculate the FOV density distribution. To con-
struct the global density distribution on the source surface, we use a time series of the den-
sity profiles and obtain a density synoptic map, similar to a magnetic synoptic map. The
time series consists of 28 profiles, one for each day of the CR. Each profile records the
density variation along the latitude direction. The observation time of these profiles can be
converted to Carrington longitudes; then, the profiles are interpolated to all the longitudes

http://www.lmsal.com/solarsoft/
http://lasco-www.nrl.navy.mil/content/retrieve/polarize/
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Figure 4 a) The original LASCO-C2 pB image of 21 October 2007 at 21:05 UT. b) The same pB data
transformed into polar coordinates. The green dashed line is the location of the source surface at 2.5 R�.
c) The electron density (N ) distribution deduced from pB data in units of N is cm−3. The red line is the
location of the source surface at 2.5 R�. d) The profile of the pB data (green line) and derived density
(red line) at the source surface. The dash-dotted vertical line and the vertical axes in b) to d) indicate the
boundaries of the east and west limb in a).
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Figure 5 The global distribution
of electron density (N ) on the
source surface during CR 2062.

Figure 6 The IPS observed solar wind velocity distribution on the source surface from CR 2054 to CR 2064
in 2007.

covering from 0 to 360 degree to construct the full synoptic map. Figure 5 shows the global
distribution of N on the source surface we finally obtained for CR2062. The main advan-
tages of this method for obtaining the global density distribution is that it is based on the
widely used and validated method of Van de Hulst (1950), the computation is very fast and
the uncertainty has been estimated by former studies (Wang and Davila, 2014).

2.3. Solar Wind Velocity

The global structure of V is very important for understanding the solar wind origin and
modeling the heliosphere. However, most in situ measurements of the solar wind velocity
are limited to the ecliptic plane due to the orbits of the spacecraft. Ulysses improved our un-
derstanding of the 3D structure of V with in situ measurements, but it had stopped working
after three pole-to-pole passages. Thus, the information as regards V at the high latitudes is
hard to be obtained directly.

The IPS data of the Nagoya University is one of the few sources providing out-
of-ecliptic observations of V . The data can be downloaded from the official website
(http://stsw1.stelab.nagoya-u.ac.jp/ips_data-e.html). Figure 6 shows the IPS data of the ve-
locity distribution during 2007. The white regions in the plot are due to lack of data. The
data missing situation in other years is similar or even worse than in 2007.

The WSA model provides an empirical function between solar wind speed and the two
magnetic properties fs and θb (Arge et al., 2003). We can use the WSA function to deduce
the global velocity distribution as long as the synoptic magnetograms are available, since
the global distribution of fs and θb can be derived from the PFSS model. However, the
WSA model can be uncertain for deducing the velocity at high latitudes, as we discussed

http://stsw1.stelab.nagoya-u.ac.jp/ips_data-e.html
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in Section 1. Moreover, the WSA function only associates the velocity with photospheric
magnetic field data.

Therefore, we aim to use the available IPS observations to establish an empirical relation
among the velocity, magnetic field properties, and the electron density. In this way, we can
always obtain the velocity using magnetograms and pB data and we can probably have
more reliable results at the out-of-ecliptic latitudes.

Tokumaru et al. (2017) studied the linear relation between the coronal hole area and V

using IPS data. They also derived a linear relation between the expansion factor and V . It
should be noted that the expansion factor in their study is given for each coronal hole, while
the fs in this work is calculated for each field line following the WSA model. Wintoft and
Lundstedt (1997, 1999) used the artificial neural network (ANN) technique to predict the
daily-averaged solar wind velocity at 1 AU. In this study, we use the ANN machine learning
method as in our previous work (Yang et al., 2018) to obtain the global distribution of V on
the source surface. In this article, we only briefly describe the application of this method.

The architecture of our ANN in this study is a three-layer feedforward network. The
calculation of our ANN can be expressed as follows:

y = g

(
b0 +

n∑
j=1

vjfj

(
bj +

m∑
i=1

wjixi

))
, (2)

where xi are the input parameters, wji , vj , bj , and b0 are the weights and biases to be
learned, fj and g are activation functions between the ANN layers, y is the output target, g

is a linear function, and fj is a bipolar sigmoid nonlinear activation function defined by

f (x) = 2

1 + e−2x
− 1. (3)

In order to establish the new relation for V , we use the IPS velocity data as the output
target y, the magnetic properties (Bss, B0, fs , θb , Lm, and L0) obtained in Section 2.1, and
the density N obtained in 2.2 as the input parameters xi . Then we can obtain the optimized
weights and biases after a machine learning process. Finally, we apply the ANN model to
calculate V on the source surface.

Since the global structure of V varies with the solar cycle, we train the ANN to obtain a
specific relation for each of the four solar phases. The descending phase is trained using the
data from CR 2057 to CR 2062 during 2007. The minimum phase is trained using the data
from CR 2070 to CR 2072 and CR 2083 to CR 2084 from 2008 to 2009. The ascending phase
is trained using the data of CR 2111, CR 2112 and CR 2115 during 2011. The maximum
phase is trained using the data from CR 2138 to CR 2139 and CR 2151 to CR 2152 from
2013 to 2014. These periods are selected for training because the IPS data have a better
spatial coverage for all latitudes. The regions missing IPS data are excluded in the training
process.

The top panel of Figure 7 exhibits the global distribution of V during CR 2062 obtained
from our ANN model. The V distributions from IPS observation and the WSA model are
also shown in Figure 7 as a preliminary validation of our result. In the following, we note
the V obtained using IPS data as VIPS, the V modeled by our ANN as VANN, and the V

modeled by the WSA model as VWSA, respectively. Firstly, we can see that the large-scale
variations in the three panels agree with each other qualitatively. Both VANN and VWSA have
higher values at the polar regions and lower values near the equator, which agrees with the
IPS observations. We note that the deep blue color at the lower-left corner in the middle
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Figure 7 The solar wind
velocity distribution on the
source surface for CR 2062
obtained from our ANN model
(top), the IPS observation
(middle) and the WSA model
(bottom).

panel is due to the lack of IPS data. The VANN in the top panel is properly modeled in the
region with no IPS observation, which demonstrates the generalization of the ANN model.
This also implies that the ANN method can be used to fill the missing IPS data. Secondly,
it seems that VANN has more details than VWSA. In Section 3.1, we will make some further
analyses of these results. It should be noted that the VWSA in this study is calculated using
the following function:

VWSA = Vs + Vf

(1 + fs)a1

[
1 − 0.8 exp

(
−

(
θb

a2

)a3
)]a4

, (4)

where Vs = 250 km s−1, Vf = 675 km s−1, a1 = 2/9, a2 = 2, a3 = 1, a4 = 1. These values
are determined in accordance with GONG data used in this article, while different values
may be used by other studies (MacNeice, 2009; Riley, Linker, and Arge, 2015).

2.4. Plasma Temperature

The temperature is also one of the important plasma parameters that are necessary for pro-
viding initial boundary conditions for coronal and heliospheric modeling. The 3D MHD
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models often use a uniform or initial boundary condition for T . However, a more reliable T

with observational constraints could improve the modeling results (Hayashi et al., 2006).
In this article, we derive the global distribution of T by solving a self-consistent MHD

system on the source surface. The ideal MHD equations can be simplified to 1D at the source
surface as follows:

V
∂N

∂r
+ N

∂V

∂r
+ 2NV

r
= 0, (5)

NV
∂V

∂r
+ ∂p

∂r
+ Ng = 0, (6)

N
∂p

∂r
− γp

∂N

∂r
= 0, (7)

r
∂B

∂r
+ 2B = 0, (8)

p = 2NR′T , (9)

∂p

∂r
= 2R′T

∂N

∂r
+ 2R′N

∂T

∂r
, (10)

β(B) = 8πp/B2. (11)

In this set of equations, r is the solar radius, p is the pressure, g is the gravitational constant,
γ is the polytrophic index, and β is the plasma beta. The previous equations are the same
used by Shen et al. (2010) and Shen, Feng, and Xiang (2012). The only difference is that we
do not need the extra statistical mass flux to close the equations. Equations 5 to 10 are well-
known, while Equation 11 corresponds to plasma β . Therefore, we have seven equations,
and 10 variables including B , N , V , T , p, ∂B

∂r
, ∂N

∂r
, ∂V

∂r
, ∂T

∂r
, and ∂p

∂r
. We have obtained three

of the variables namely B , N , and V in Sections 2.1, 2.2, and 2.3, respectively. Thus, we
can substitute them in the seven equations above to solve out the seven unknown variables
including T . The gradients can further be used to construct the initial values along the radial
direction. The value of plasma beta is empirically determined as:

β =
{

βc (other region)
C

B2 (current sheet region),
(12)

where βc and C are constants. For CR 2062, we used βc = 2 and C = 0.01 G2, which are
reasonable according to the study of Gary (2001). We note the current sheet region as the
region where B is less than 0.05 G. Figure 8 presents the modeling result for T on the
source surface for CR 2062. This figure illustrates that the T distribution is coupled with the
observational information from both B and N .

3. Results

In this section, we present some results obtained with the method introduced in Section 2.
Firstly, we analyze the distribution of V for CR 2062 particularly in Section 3.1 by compar-
ing it with both the IPS observations and the WSA model. Then, we present the modeling
results of B , N , V , and T for four CRs from different solar cycle phases in Section 3.2.
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Figure 8 The modeling result of
the plasma temperature
distribution on the source surface
for CR 2062.

Figure 9 Plots of the difference between VANN and VIPS (left panel) and the difference between VWSA and
VIPS (right panel). Both plots are the results for CR 2062.

3.1. Analyses of V Obtained from the ANN Model for CR 2062

We have already obtained the global distribution of V for CR 2062 in Section 2.3, in this sec-
tion we make some further analyses of the result. In order to examine if our ANN model had
rebuilt the global structure of V properly, we calculate the difference between the modeled
value VANN and the observed value VIPS for every grid point (181 by 361 points in this study)
on the source surface as shown in the left panel of Figure 9. The difference between VWSA

and VIPS is presented simultaneously in the right panel of Figure 9 for comparison. In this
figure, the yellow color represents the positive difference, while the blue color represents the
negative difference. A darker color means a bigger difference value, so it is obvious where
the results are worse or better. The darkest yellow regions with difference values of more
than 400 (mostly located latitudes −30 to −90, longitudes 0 to 120 degree) in both panels
are due to missing IPS data. The VIPS at these missing data points is set to zero, but the VANN

and VWSA at these points are filled by the model, so the difference values of (VANN–VIPS) and
(VWSA–VIPS) are all very large. In the left panel of Figure 9, there is no very dark colors at all
latitudes, which means a good reconstruction of the global distribution by the ANN model.
From the right panel of Figure 9, it can be seen that the WSA model generally overestimated
the velocity in the northern polar regions and underestimated the velocity in the southern po-
lar regions. Moreover, there are some large difference values represented in dark yellow and
dark blue at the middle and low latitudes (0 to ±60 degree) in the right panel, meaning that
these regions are not well reconstructed by the WSA model. On the contrary, the difference
values for the ANN model are distributed more uniformly and limited to relatively small
values.

Figure 10 plots histograms for the difference values excluding the missing data points in
Figure 9. This figure shows the difference values quantitatively. The left panel shows that the
errors between VANN and VIPS are almost all distributed in the range of ±200 km s−1 and that
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Figure 10 Histograms of the difference values between VANN and VIPS (left panel) and between VWSA and
VIPS (right panel). Both panels are the results for CR 2062.

Figure 11 The left panel is the scatter density plot to compare VANN with VIPS, while the right panel is the
scatter density plot to compare VWSA with VIPS. The correlation coefficient (cc) values are also shown at the
top of both panels. Both panels are results for CR 2062.

more than 35,000 points of the total 61,492 points have an error less than ±50 km s−1. While
in the right panel, the errors between VWSA and VIPS are also mostly distributed between
±200 km s−1, there are few large errors between ±200 and ±400 km s−1. This is coincident
with Figure 9, because both models give the large-scale structure properly, but the ANN
model is more accurate in some regions.

The linear correlation analyses for our ANN model and the WSA model are shown in
Figure 11. The black dashed lines in both panels of Figure 11 present the correlation coef-
ficients (cc) between the modeled and the observed values equal to 1. The scatter density
in the left panel illustrates the correlation between VANN and VIPS and the scatter density in
the right panel presents the correlation between VWSA and VIPS. The dots of our ANN model
are very close to the black dashed line, while the dots of the WSA model are closer to a
bimodal structure with two concentrated values at about 700 km s−1 and 300 km s−1. The
calculated cc between VANN and VIPS is 0.92, while the cc between VWSA and VIPS is 0.52,
as shown on top of the panels in Figure 11. The cc value of the WSA model is reason-
able according to previous studies (Owens et al., 2008, 2013; Bussy-Virat and Ridley, 2014;
Reiss et al., 2016). It should be noted that the IPS velocity might have some uncertainties
and can be biased from the real values sometimes. Firstly, the original IPS observations con-
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tain the integral effect along line-of-sight, thus the velocity is derived through a tomographic
procedure which will bring in some uncertainties. Secondly, the VIPS data on the source sur-
face are calculated kinematically without considering the stream-stream interaction and the
acceleration process. These uncertainties might be responsible for the relatively lower but
still good cc between VWSA and VIPS.

With the analyses done, we conclude that our ANN model reconstructed the global distri-
bution of V quite accurately for CR 2062. Comparisons with the WSA model demonstrated
that the global distribution of V from our ANN model is more reliable.

3.2. The Global Distribution of B , N , V , and T for Four CRs from Different
Solar Cycle Phases

The global structure of the solar wind parameters varies largely with the solar activity cycle.
Thus, it is necessary to test if our model can work for different phases during a solar cycle.
We modeled the global distribution of B , N , V , and T for four example CRs from different
phases of the solar cycle, namely CR 2062 from the descending phase, CR 2075 from solar
minimum, CR 2111 from the ascending phase, and CR 2152 from solar maximum. The
modeling results are shown together in Figure 12.

Firstly, we look at the different parameters for every CR by looking at the columns.
It is clear that the global distribution of V and T deduced by our method is highly cou-
pled with the observationally determined B and N for each CR. The magnetic field is the
main controller of the large-scale structure. Although the results of B and N are derived
from different observations, they coincide nicely in the large scale. The highest density and
lowest velocity regions are consistent with the current sheet regions. The derived V and
T are also coincident with each other, as we can see the higher V generally corresponds
to the higher T .

Secondly, we can look at each parameter for different CRs, looking at the rows. In this
way, we can find how the global structure of each parameter changes with the solar cycle.
It is obvious that the structures for all the parameters are simpler in the descending and
minimum phases, as shown in the first and second columns. The distributions become much
more complicated in the ascending and maximum phases. As a typical coronal magnetic
field structure, the current sheet becomes wavier during more active solar phases. The clas-
sical bimodal structure of V can be found for CR 2062 and CR 2075, showing higher values
at polar regions and lower values near the equator. On the contrary, the structures of V dur-
ing CR 2111 and CR 2152 are very complicated with no symmetrical distribution. We can
also see that the values of V and T during solar maximum are generally lower than the ones
during solar minimum. This is coincident with in situ observations of Ulysses and can be
explained by the presence of smaller coronal holes during solar maximum. Thus, our mod-
eling results for the four example CRs agree with the general characteristics of the different
solar cycle phases.

To validate further our modeling results, the distributions on the source surface are
mapped to 1 AU to be compared with in situ observations. The mapping process is based
on the simple assumption that the solar wind would remain having a constant speed along
the radial direction. Figure 13 exhibits the comparison between our modeling results and
the in situ observations near Earth. The near-Earth solar wind data is downloaded from the
OMNI web interface (http://omniweb.gsfc.nasa.gov). The four rows from the top to the bot-
tom, respectively, show the results for the interplanetary magnetic field (IMF) polarity, N ,
V , and T . In this article, a positive IMF polarity indicates that the IMF is directed from the
Sun to the Earth. The IMF polarities are generally well predicted for all four CRs, which

http://omniweb.gsfc.nasa.gov
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Figure 14 The comparison between our modeling results for CR 2062 and the Ulysses third-orbit data for
the IMF polarity, N , V , and T , respectively.

means that the large-scale structures are modeled correctly. The result for CR 2152 is the
worst, which might be because the PFSS model is not suitable for some periods during solar
maximum. The velocity results from our model are compared with the OMNI and IPS data
simultaneously in the third row of Figure 13. The OMNI and IPS observations are relatively
coincident, but they have some discrepancies for small structures and absolute values. Our
modeled V values agree well with the OMNI data during CR 2062 and CR2075, when the
IPS data is very close to the OMNI data. The modeled V values during CR 2111 and CR
2152 are coincident with the IPS data better than with the OMNI data. These results are rea-
sonable, since our model is trained using the IPS observations. The modeling results of N

and T agree well with the OMNI data on the large scale during all the examined CRs. Most
observed peaks of N and T are captured by our model, although the specific values may have
some difference. Running an MHD model, instead of the simple mapping process, may fur-
ther improve the prediction of the parameters near the Earth, because dynamic processes
such as the interaction between fast and slow streams are ignored with the simple mapping.

The comparison with the near-Earth observations can only validate the modeling results
near the ecliptic plane, thus we also compare the results with the Ulysses observation to ex-
amine our model performance at high latitudes. The third orbit of Ulysses spacecraft com-
pleted a rapid pole-to-pole (about −80 to 80 degree) passage in 2007, so the observed data
can be used to verify our modeling results for CR 2062. Both the modeled source surface
distributions and Ulysses data are mapped to 1 AU for comparison. Figure 14 presents the
comparison between the CR averaged modeling results for CR 2062 and the Ulysses data
for the IMF polarity, N , V , and T , respectively. It can be seen that all the modeled param-
eters agree with the Ulysses observations on the large scale. The modeled results are much
smoother than Ulysses data, since Ulysses data actually contain the variations during many
CRs. The modeled and observed IMF polarities are coincident at most latitudes and both
show that the inversion of the polarity happens near the equator. The modeled results show
higher values of N at lower latitudes and higher values of V and T at higher latitudes, which
are also in good agreement with the observations. Both our results and Ulysses data show
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high density above 5 cm−3 distributed within ±20 degree, velocity larger than 600 km s−1,
and temperature larger than 2 × 105 K distributed above ±40 degrees. The comparisons
with both the OMNI and Ulysses data demonstrate that our model could give the global
distribution of different solar wind parameters on the source surface properly.

4. Conclusions

In this article, we present a new method to construct the global distribution of B , N , V ,
and T on the source surface. The distribution of B is extrapolated from photospheric mag-
netogram observations using the PFSS model. The distribution of N is deduced from pB

observations. The distribution of V is obtained with an ANN model, which establishes the
relation among V , the magnetic field properties, and N . The ANN is trained using global
observations, so it is suitable at all latitudes. After the training process, V can be deduced
based on magnetograms and pB observations. Finally, T is derived self-consistently by
solving a 1D MHD system on the source surface. In this way, T is also deduced from mag-
netograms and pB observations. Therefore, our method can use the magnetograms and pB

observations to construct the self-consistent global distribution of B , N , V , and T .
The global distribution of V obtained by our ANN model for CR 2062 is analyzed par-

ticularly to show the model performance. The modeled global distribution of V agrees well
with the IPS observations according to the point-by-point difference analysis. Although the
ANN architecture we used in this article is relatively simple, the cc for our modeled and the
observed V is as high as 0.92, which means the ANN can reproduce most of the observed
variability. The comparison with the WSA model shows the ability of our ANN model to
give a more reliable distribution at all latitudes. The physical mechanism of solar wind accel-
eration and interaction in the corona is very complicated and has not been fully understood,
so the WSA function which relies on only two coronal hole related characteristics, fs and
θb , is definitely not enough to model out all the details for the global variation of V . The
ANN technique is a predominant tool for modeling nonlinear complex systems, such as the
solar-terrestrial environment. The ANN with a nonlinear active function in the hidden layer
can simulate any nonlinear process with suitable input characteristics and proper artificial
neurons. The better reconstruction of V demonstrates that our ANN has reflected the phys-
ical process of the solar corona more realistically than the WSA model by involving more
theoretical and observational parameters, including Bss, B0, Lm, L0, and Nss. However, the
physical process is still not clear, as it is implicit in the weights and biases of the ANN. Fur-
ther study is needed for understanding how each parameter we use affects the distribution of
V . In addition, the ANN machine learning technique could train a better model with more
sample data. Thus, the performance of the ANN in this article may be improved with more
observational data collected in the future.

The modeling results of B , N , V , and T for four CRs from different solar cycle phases
are reasonable. The modeled global distributions of different parameters are associated with
observations, are self-consistent and solar cycle dependent. The rough comparison of the
modeling results with both the near-Earth and Ulysses data further validate the performance
of our model during the different solar cycle phases. In a future work, we plan to use the
global distribution of magnetic field and plasma parameters obtained by this observation-
based self-consistent method as a more realistic boundary condition for 3D MHD solar
wind modeling.
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