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Abstract A new hybrid numerical scheme of combining an E-CUSP (Energy-Convective Upwind

and Split Pressure) method for the fluid part and the Constrained Transport (CT) for the magnetic

induction part is proposed. In order to avoid the occurrence of negative pressure in the reconstructed

profiles and its updated value, a positivity preserving method is provided. Furthermore, the MHD

equations are solved at each physical time step by advancing in pseudo time. The use of dual time

stepping is beneficial in the computation since the use of dual time stepping allows the physical time

step not to be limited by the corresponding values in the smallest cell and to be selected based on the

numerical accuracy criterion. This newly established hybrid scheme combined with positivity pre-

serving method and dual time technique has demonstrated the accurateness and robustness through

numerical experiments of benchmark problems such as the 2D Orszag-Tang vortex problem and the

3D shock-cloud interaction problem.
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1�Introduction

In recent years, the Convective Upwind and Split

Pressure (CUSP) family schemes have achieved great

success in CFD simulations. The characteristic of

CUSP schemes is that it simultaneously consider the

convective upwind characteristics and avoid the com-

plex matrix dissipation such as that of the Roe’s flux

difference splitting scheme. The CUSP family can

be basically categorized into two types: the H-CUSP

and E-CUSP[1−2]. The H-CUSP scheme has total en-

thalpy in the energy equation in the convective vec-

tor, so the scheme is not fully consistent with the

disturbance propagation that may affect the stabil-

ity and robust of the H-CUSP scheme. While, the

E-CUSP schemes use total energy in the convective

terms, which result in splitting the eigenvalues of the

Jacobian to convection (velocity) and waves (speed of

sound).

In reality, the fluid part of the MHD leads to
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an extended Euler system with magnetic force as

source[3]. What’s more, the wave-like structure of

the MHD is analogous to that of the hyperbolic sys-

tems and thus the E-CUSP scheme have been ex-

tended by Shen et al.[4] to the MHD. The E-CUSP

for MHD introduced by Shen et al.[4] has low diffu-

sion and is able to capture the crisp shock waves and

exact contact discontinuities. In this paper, we use

E-CUSP method to deal with the fluid part of the

MHD. To keep the divergence constraint of the mag-

netic, i.e., ∇·B = 0, the constraint transport method

by Ziegler[6−7] is used to keep it to round-off error.

In order to maintain positivity of pressure and den-

sity in the reconstructed profile within the zone for

problems involving multiple, interacting shock waves

in complex flow, a self-adjusting positivity preserving

method by Balsara[5] is used to deal with this posi-

tivity problem. The method examines the local mag-

netic speed to detect regions with strong shock. By

visiting the neighboring zones that have connectivity

with a zone of interest, we are able to identify min-

imum and maximum values for density and pressure

that should bound the reconstructed profile within

the zone of interest[5]. Then, weighted mean of the

reconstructed conserved variable and the conserved

variable is used to correct the reconstructed vari-

able. The self-adjusting positivity preserving method

is easy and inexpensive to implement and the result

show that this method can efficiently enhance the ro-

bustness.

In the three-dimensional simulation, time steps

should be dictated by numerical stability, so they

are much smaller than required by accuracy con-

siderations, which will increase computer time for

conditionally stable time-marching schemes. To im-

prove computational efficiency, schemes which can

use larger possible time-step sizes permitted by ac-

curacy considerations should be taken into account.

Here, we use the dual time step scheme to update the

flow and magnetic conserved variables. The use of

dual time stepping allows the physical time not to be

limited by the corresponding values in the smallest

cell and to be selected based on the numerical accu-

racy criterion[8]. It is found to be efficient in terms of

memory required and computing effort per time step.

This is due to the fact that no matrix manipulation

is required by the scheme[9]. Dual time step, which

do not modify the original transient evolution of the

governing equation, adds to the governing equation

a pseudo-time derivative. It uses the pseudo-time

steady-state solution to approach the physical-time

solution. The advantage of dual time step is that it

can speed up the computational efficiency and extend

the range of plasma value.

2�Numerical Method for

MHD Equations

The ideal MHD equation for inviscid flow can be ex-

pressed as:

∂ρ

∂t
+ ∇ · (ρV ) = 0, (1)

∂ρV

∂t
+ ∇ · (ρV V + ptI −BB) = 0, (2)

∂ρe

∂t
+ ∇ · [(ρe + pt)V −B(B · V )

]
= 0, (3)

∂B

∂t
+ ∇ · (V B −BV ) = 0, (4)

where ρ is the flow density, V = (u, v, w) is the flow

velocity, B is the magnetic field, p is the pressure, ρe

is the total energy, and pt = 1
2B

2 + p.

In this paper, following the idea of Fuchs[3] we

split the MHD equations into a fluid part Eq. (1)∼(3)

and a magnetic induction part Eq. (4), and employ

the E-CUSP for the fluid part and CT scheme for

the magnetic induction part in order to get a scheme

for full MHD equations[3]. The fluid part leads to

an extended Euler system with magnetic forces as

source terms. This set of equations is approximated

by E-CUSP[4]. The magnetic part is modeled by the

magnetic induction equations which are solved using

the constrained transport method[6−7], while preserv-

ing the divergence-free constraint. These two sets of
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schemes can be combined either component by com-

ponent, or by using an operator splitting procedure to

produce a full scheme for the MHD equations. This

is, piecing them together, the resulting update full

scheme for MHD equations reads

B̄
n+1
f = WCT

(
Un

···, B̄
n
···, δt

n
)
,

Un+1
i,j,k = V E-CUSP

(
Un

..., B̄
n
···, δt

n
)
.

The B̄f represent magnetic B
xi+

1
2 ,j,k

, B
yi,j+

1
2 ,k

,

B
zi,j,k+

1
2
. In the present paper, we implement each

item of our hybrid scheme by using E-CUSP for the

fluid part, CT for the magnetic induction part and

dual time integration strategy.

We can rewrite the governing Eq. (1)∼(3) in the

Cartesian coordinates with compact form as

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0, (5)

with each term having its usual meaning. The

semi-discretized conservative three-dimensional MHD

equation reads

∂U

∂t
+
F

i+
1
2 ,j,k

− F
i− 1

2 ,j,k

δx
+

G
i,j+

1
2 ,k

−G
i,j− 1

2 ,k

δy
+

H
i,j,k+

1
2
−H

i,j,k− 1
2

δz
= 0. (6)

In an E-CUSP scheme for hydrodynamics, the

flux are divided into two parts: the convective terms

and the acoustic waves propagating in each direction

at subsonic regime. The basic idea has been extended

by Shen et al.[4] to the MHD because the MHD wave-

like structure is analogous to that of hydrodynamics.

Following the E-CUSP scheme of Zha et al.[10], we

decompose the flux F to convective and generalized

wave fluxes:

F = fu + P + ψu, (7)

where

f =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ

ρu

ρv

ρw

ρe

⎤
⎥⎥⎥⎥⎥⎥⎦

,

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

pt − BxBx

−ByBx

−BzBx

−Bx(uBx + vBy + wBz)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

ψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

pt

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The numerical flux at the interface is evaluated

according to that given by Shen et al [4].

For numerical simulation of the MHD equa-

tion, how to preserve the divergence-free condition

of the magnetic filed ∇ · B = 0 is a curial is-

sue. There are several approaches to deal with this

problem[11−12,14−15], the constraint transport is one

of the approaches. In this paper, the constraint trans-

port scheme suggested by Ziegler[6−7] is used.

As usual, in order to achieve second order spa-

tial accuracy, flux reconstruction technique should be

employed. Here, the Monotone Upstream-Centered

(MUSCL) reconstruction scheme is used to recon-

struct the flow variable. Following Ziegler[6−7], the

reconstruction of magnetic field can be achieved by

using values at the centers of the cell surfaces.

Positivity of density and pressure may be lost in

the unknowns’ updating step at next time step some-

where within a zone or during the reconstruction pro-

cedure in obtaining the reconstructed values at the

cell interface. In order to avoid the negativeness of

density and pressure in the reconstruction and updat-

ing procedure, we take the following methods. First,

to preserve positivity for constructed variables, we
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follow the self-adjusting positivity-preserving method

proposed by Balsara[5]. His method examines the lo-

cal flow to identify regions with strong shocks. The

permitted range of densities and pressures is also ob-

tained at each zone by examining neighboring zones.

The range is expanded if the solution is free of strong

shocks in order to accommodate higher order non-

oscillatory reconstructions. The density and pressure

are then brought into the permitted range. For de-

tails, refer to Balsara[5]. Second, to insure the positiv-

ity of the updated variables for each new time level,

if the pressure from the energy is negative, we turn

to solve the entropy equation

∂

∂t

( p

ργ−1

)
+ ∇ ·

(
u

p

ργ−1

)
= 0.

Furthermore, If the pressure is still negative, we

use the method of Keppens et al.[16] by suggesting

the positivity fixing strategy as follows: (1) identify

all cells that represent physical states surrounding a

faulty cell; (2) convert those cells to primitive vari-

ables; (3) For all but the magnetic field components,

replace the faulty cell values by the average of sur-

rounding physical state cells. Finally, after all the

above methods, if there are still some points which

have negative pressure, we use the values at the pre-

vious time step to replace those for this time step in

these points.

To improve the computational efficiency, we use

a special implicit scheme which is matric-free implicit

dual time-stepping scheme to advance time march-

ing. The scheme added to the governing equations

a pseudo-time derivative that emulates the original

physical-time derivative. In reality, the implicit dual

time step scheme[18] can use a lager time step than

the explicit scheme, even dozens of time step that of

explicit schemes. Thus the scheme can speed up the

simulation.

In the implicit physical time steeping, the second

order backward difference in time formula is used to

discretize ∂/∂t in Eq. (6):

3Un+1
i,j,k − 4Un

i,j,k +Un−1
i,j,k

2δt
=

−
F n+1

i+
1
2 ,j,k

− F n+1

i− 1
2 ,j,k

δx
−

Gn+1

i,j+
1
2 ,k

−Gn+1

i,j− 1
2 ,k

δy
−

Hn+1

i,j,k+
1
2

−Hn+1

i,j,k− 1
2

δz
, (8)

where the superscript n + 1 is the time level at

(n+1)δt, and all the variables with superscript n+1

are evaluated at this time level. Then, we add the

derivative of a fictitious pseudo-time τ to the above

Eq. (8):

Un+1,m+1
i,j,k −Un+1,m

i,j,k

δτ
+

3Un+1,m+1
i,j,k − 4Un

i,j,k +Un−1
i,j,k

2δt
=

−
F n+1,m+1

i+
1
2 ,j,k

− F n+1,m+1

i− 1
2 ,j,k

δx
−

Gn+1,m+1

i,j+
1
2 ,k

−Gn+1,m+1

i,j− 1
2 ,k

δy
−

Hn+1,m+1

i,j,k+
1
2

−Hn+1,m+1

i,j,k− 1
2

δz
,

where, n is the physical time level, m is the pseu-

dotime level (the number of subiterations), δτ is the

pseudotime step size, and δt is the physical time step.

δt will be set to be some integer times the explicit time

step Δt constrained by the usual Courant-Friedrichs-

Lewy (CFL) condition with

Δt = CFL/ max ·
[√( |vx| + cfx

Δx

)2

+
( |vy| + cfy

rΔy

)2

+
( |vz| + cfz

Δzi

)2
]

.

Here, cfx, cfy, cfz are defined as usual to be the fast

magnetosonic speeds in x, y, z directions, respectively.

After the residual terms in the righthand of the above

equation are linearized at the m+1 pseudo-time level

with respect to the previous pseudotime level m, we

arrive at an unfactored implicit form as follows.
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( 1
δτ

+
3

2δt

)
δUn+1,m+1

i,j,k +
1
δx

(An+1,m

i+
1
2 ,j,k

δUn+1,m
i+1,j,k−

An+1,m

i− 1
2 ,j,k

δUn+1,m+1
i−1,j,k ) =

− 3Un+1,m
i,j,k − 4Un

i,j,k +Un−1
i,j,k

2δt
−

F n+1,m

i+
1
2 ,j,k

− F n+1,m

i− 1
2 ,j,k

δx
−
Gn+1,m

i,j+
1
2 ,k

−Gn+1,m

i,j− 1
2 ,k

δy
−

Hn+1,m

i,j,k+
1
2

−Hn+1,m

i,j,k− 1
2

δz
−

1
δy

(Bn+1,m

i,j+
1
2 ,k

δUn+1,m
i,j+1,k − Bn+1,m

i,j− 1
2 ,k

δUn+1,m+1
i,j−1,k

)−
1
δz

(Cn+1,m

i,j,k+
1
2

δUn+1,m
i,j,k+1 − Cn+1,m

i,j,k− 1
2
δUn+1,m+1

i,j,k−1

)
,

An+1,m

i+
1
2 ,j,k

=
1
2

[(
∂F

∂U

)n+1,m

i,j,k

+
(

∂F

∂U

)n+1,m

i+1,j,k

]
.

The matrix B and C are like A. Similarly, the above

dual time procedure applies to the CT scheme for the

magnetic induction part.

These equations are marched in pseudo time un-

til the derivation of U i,j,k with respect to τ converges

to zero. In simulation, the equations are iterated in

pseudo time so that Un+1,m+1 approaches the physi-

calUn+1 as

∣∣∣∣∣U
n+1,m+1
i,j,k −Un+1,m

i,j,k

δτ

∣∣∣∣∣ converges to zero.

This method described above is named the dual time

hybrid scheme.

In the dual time stepping procedure, a physical-

time accurate solution is generated upon convergence

towards pseudo-time steady-state per physical-time

step[17]. In practice, it is not necessary for the the

derivation of U i,j,k with respect to τ to approach

zero. As pointed out by Zhao and Li[17], the conver-

gence criterion can be prescribed by requiring that

the residual error max (δρ/δτ) decreases three mag-

nitude. Here, we obtain the conserved variables at

n+1 time level by choosing

∣∣∣∣∣U
n+1,m+1
i,j,k −Un+1,m

i,j,k

δτ

∣∣∣∣∣ <

1 × 10−3 as the convergence criterion. At the same

time, in order to avoid the computation into infinite

loop, the maximum iteration steps may be limited. In

each pseudo-time step, the above equation is solved

by employing Gauss-Seidel line iteration. The value

of pseudo-time δτ = min
(2

3
δt,

CFLsub · Vi,j,k

λA + λB + λC

)
[18]

(CFLsub is the CFL number, Vi,j,k represent the cell

volume, λA, λB, λC represent the maximum eigen-

value in x, y, z direction, respectively) is used such

that the matrix involved in the solver is diagonal

dominant and the Gauss-Seidel line iteration can con-

verge.

Since backward differentiation in time integra-

tion involves three time steps, namely n − 1, n and

n + 1, a startup procedure is required. Hence, for

the first iteration, the explicit second-order Runge-

Kutta time stepping that involves two time steps, n

and n+1, is used to integrate Eq. (4) and Eq. (6) with

variable reconstruction given above (hereafter called

the explicit hybrid scheme).

3�Numerical Examples

3.1 3D: Shock-cloud Interaction with

Explicit Hybrid Scheme

The interaction of a strong shock wave with a density

clump in a magnetic environment is a problem of as-

trophysical relevance[6]. The computational domain

is a Cartesian box given by

(x, y, z) ∈ [−0.5, 0.5]3

with the initial condition from Ziegler[6]. There is a

discontinuity at x = 0.1 with left and right states:

when x < 0.1, ρ = 3.868 59, p = 167.345, u = 0.0,

v = 0.0, w = 0.0, Bx = 0.0, By = 2.182 681 2,

Bz = −2.182 618 2; when x � 0.1, ρ = 1.0, p = 1.0,

u = −11.2536, v = 0.0, w = 0.0, Bx = 0.0,

By = 0.564 189 58, Bz = 0.564 189 58.

In this problem, the discontinuity moves in +x

direction opposite to the highly supersonic flow right

to the discontinuity. A spherical density clump with

radius 0.15 is embedded having a constant density

of 10 at x = (0.3, 0, 0). Here, the adiabatic index

γ = 5/3, and zero-gradient boundary conditions are
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used for all the variables.

The simulation are carried out on 100×100×100

grid and stopped at t = 0.06 after a violent collision

between the shock and clump has taken place. The

resulting density distribution and the magnitude of

Bx in the x-y plane runs in Fig. 1. In our simula-

tion, negative pressure has been seen in the recon-

structed profiles, but after the remedy with the self-

adjusting positivity-preserving method, the negative

pressure in the reconstructed profiles has gone. Our

results are in good agreement with the computations

in Ziegler[6].

3.2 2D: Orszag-Tang Vortex with

Dual Time Hybrid Scheme

Because the Orszag-Tang vortex problem has interac-

tions of multiple shock waves generated as the vortex

evolves, it is considered as one of the standard models

to validate a MHD numerical method[4,19].

The Orszag-Tang vortex problem is given by

the giving initial conditions on a square domain

[0, 2π]× [0, 2π]:

ρ(x, y, 0) = γ2, p(x, y, 0) = γ,

u(x, y, 0) = − sin y, v(x, y, 0) = sin x,

Bx(x, y, 0) = − sin y, By(x, y, 0) = sin 2x,

where γ = 5/3. Periodic boundary conditions are

adopted in both coordinate directions. Numerical re-

sults are calculated on an N2 grid with N = 200, 400

zones. Fig. 2 and 3 display the pressure and Bx con-

tours with a uniform mesh of 200×200 and 400×400

grid points for the different CFL conditions.

From Fig. 2 and 3, it is evident that at t = 3, a

fast shock front is formed in the region of 1.25π < x <

1.5π and 0 < y < 0.75π, a slow shock front is formed

in the region of 0.5π < x < π and 0.5π < y < 0.75π.

We found that our results are almost identical to

those of Ref. [4, 20–24], although different grids are

used.

Fig. 4 shows the influence of different CFL con-

ditions on the pressure distributions along the line

of y = 1.0 with the different mesh grids: 200 × 200

(Fig. 4a) and 400 × 400 (Fig. 4b). From Fig. 2 and 3,

we can not discover any difference of the pressure and

Bx with different CFL. But from Fig. 4, we can find

the dual time stepping scheme will increase the max-

imum and the minimum value of the vortex problem

slightly without changing the general structure of the

problem. In total, the scheme works well.

From our experiments, it is found that the con-

vergence criterion for the inner iteration loop is signif-

icant in simulating unsteady MHD flows. In the inner

iteration, using a given convergence criterion is sug-

gested; if using a maximum iteration step, to ensure

the time accuracy and at the same time improve the

computational efficiency, we suggest that the maxi-

mum iterations are limited in different areas. Near

large gradient regions, increasing the inner maximum

Fig. 1 Pressure and Bx contours in the x-y plane of shock-cloud interaction problem with the explicit

hybrid scheme with grid mesh 100 × 100 × 100 at t = 0.06
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Fig. 2 Pressure contour (a) and Bx contours (b) of Orszag-Tang MHD problem with different CFL values

with grid mesh 200 × 200 at t = 3.0. The CFL number of the first row is 0.3, the second row is 3.0,

the third row is 6.0, and the fourth row is 9.0

iteration and refining grid can better enhance the res-

olution of such variations.

4�Conclusions

Here is proposed a second order accuracy hybrid nu-

merical scheme of combing E-CUSP scheme for the

fluid part in MHD equations and the constrained

transport method for the magnetic induction part.

This newly established scheme can avoid the complex

eigenstructure of the Jacobian matrices. Backward

differentiation in time integration with dual time

stepping is used to relax the physical time step. Two

standard test problems, including the 2D Orszag-

Tang vortex problem and the 3D shock-cloud interac-

tion problem, are solved to validate the accuracy and

the robustness of the scheme. The results demon-

strate that the scheme can resolve the complex wave

characteristics in MHD very well.

It is hoped that the present dual time hybrid

scheme can extend the limitation of the plasma beta

in the strong magnetic field region, such as solar coro-

nal magnetic field MHD reconstruction, because of

the admittance of enlarged CFL condition. What’s
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Fig. 3 Pressure contour (a) and Bx contours (b) of Orszag-Tang MHD problem with different CFL values

with grid mesh 400 × 400 at t = 3.0. The CFL number of the first row is 0.3, the second row is 6.0,

the third row is 9.0, and the fourth row is 18.0

Fig. 4 Different CFLs’ influence on the pressure of Orszag-Tang MHD problem along the line y = 1.0 at

t = 3.0 with different grids: 200 × 200 (a) and 400 × 400 (b)
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more, in a pseudo-time, the acceleration techniques,

such as multigrid[25], time-derivation preconditio-

ning[26], can be used without changing the properties

of the physical-time. These considerations, combined

with the present method’s application to the numeri-

cal simulation of solar corona[11−13,15], will be left for

our future work.
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[8] Uygun M, Kırkköprü K. Computation of time-accurate

laminar flows using dual time stepping and local precondi-

tioning with multigrid [J]. Turkish J. Eng. Environ. Sci.,

2007, 31(4):211-223

[9] Zhao Y, Hui Tan H, Zhang B. A high-resolution

characteristics-based implicit dual time-stepping VOF

method for free surface flow simulation on unstructured

grids [J]. J. Comput. Phys., 2002, 183(1):233-273

[10] Zha G C, Shen Y, Wang B. An improved low diffu-

sion E-CUSP upwind scheme [J]. Comput. Fluid., 2011,

48(1):214-220

[11] Feng X, Yang L, Xiang C, et al. Three-dimensional so-

lar wind modeling from the Sun to Earth by a SIP-CESE

MHD model with a six-component grid [J]. Astrophy. J.,

2010, 723(1):300

[12] Feng X, Zhang S, Xiang C, et al. A hybrid solar wind

model of the CESE+ HLL method with a Yin-Yang

overset grid and an AMR grid [J]. Astrophys. J., 2011,

734(1):50

[13] Feng X, Jiang C, Xiang C, et al. A data-driven model

for the global coronal evolution [J]. Astrophys. J., 2012,

758(1):62

[14] Feng X, Xiang C, Zhong D. The state-of-art of three-

dimensional numerical study for corona-interplanetary

process of solar storms [J]. Sci. Sin. Terr., 2011, 41:1-

28. In Chinese (��	, 
��, ��. ��������
�������� !"# [J]. $%&�, 2011, 41:1-28)

[15] Feng X, Yang L, Xiang C, et al. Validation of the 3D

AMR SIP-CESE solar wind model for four Carrington ro-

tations [J]. Solar Phys., 2012, 279(1):207-229

[16] Keppens R, Meliani Z, Van Marle A J, et al. Parallel, grid-

adaptive approaches for relativistic hydro and magnetohy-

drodynamics [J]. J. Comput. Phys., 2012, 231(3):718-744

[17] Zhao H Y, Li J L. Application analysis on dual-time step-

ping [J]. Chin. J. Comput. Phys., 2008, 25(3):5-10. In

Chinese ('Æ(, )*+. ,-./01�2345 [J]. 67
89, 2008, 25(3):5-10)

[18] Jameson A. Time dependent calculations using multi-

grid, with applications to unsteady flows past airfoils and

wings [R], AIAA 91-1596. Honolulu: AIAA, 1991

[19] Balbás J, Tadmor E, Wu C C. Non-oscillatory central

schemes for one- and two-dimensional MHD equations:

I [J]. J. Comput. Phys., 2004, 201(1):261-285

[20] Xueshang F, Yufen Z, Yanqi H. A 3rd order WENO

GLM-MHD scheme for magnetic reconnection [J]. Chin.

J. Space Sci., 2006, 26(1): 1-7

[21] Jiang G S, Wu C. A high-order WENO finite difference

scheme for the equations of ideal magnetohydrodynam-

ics [J]. J. Comput. Phys., 1999, 150(2):561-594

[22] Zachary A L, Malagoli A, Colella P. A higher-order Go-

dunov method for multidimensional ideal magnetohydro-

dynamics [J]. SIAM J. Sci. Comput., 1994, 15(2):263-284

[23] Tang H Z, Xu K. A high-order gas-kinetic method for mul-

tidimensional ideal magnetohydrodynamics [J]. J. Com-

put. Phys., 2000, 165(1):69-88

[24] Zhu Yufen, Feng Xueshang. A new hybrid numerical

scheme for two-dimensional ideal MHD equations [J].

Chin. Phys. Lett., 2012, 29(9):094703

[25] Kifonidis K, Müller E. On multigrid solution of the im-

plicit equations of hydrodynamics Experiments for the

compressible Euler equations in general coordinates [J].

Astron. Astrophys., 2012, 544, A47

[26] Turkel E. Preconditioning techniques in computational

fluid dynamics [J]. Ann. Rev. Fluid Mech., 1999, 31(1):

385-416


