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ABSTRACT

The objective of this paper is to explore the application of a six-component overset grid to solar wind simulation with
a three-dimensional (3D) Solar-InterPlanetary Conservation Element/Solution Element MHD model. The essential
focus of our numerical model is devoted to dealing with: (1) the singularity and mesh convergence near the poles
via the use of the six-component grid system, (2) the ∇ ·B constraint error via an easy-to-use cleaning procedure by
a fast multigrid Poisson solver, (3) the Courant–Friedrichs–Levy number disparity via the Courant-number insen-
sitive method, (4) the time integration by multiple time stepping, and (5) the time-dependent boundary condition
at the subsonic region by limiting the mass flux escaping through the solar surface. In order to produce fast and
slow plasma streams of the solar wind, we include the volumetric heating source terms and momentum addition by
involving the topological effect of the magnetic field expansion factor fS and the minimum angular distance θb (at
the photosphere) between an open field foot point and its nearest coronal hole boundary. These considerations can
help us easily code the existing program, conveniently carry out the parallel implementation, efficiently shorten the
computation time, greatly enhance the accuracy of the numerical solution, and reasonably produce the structured
solar wind. The numerical study for the 3D steady-state background solar wind during Carrington rotation 1911
from the Sun to Earth is chosen to show the above-mentioned merits. Our numerical results have demonstrated
overall good agreements in the solar corona with the Large Angle and Spectrometric Coronagraph on board the
Solar and Heliospheric Observatory satellite and at 1 AU with WIND observations.
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1. INTRODUCTION

The spherical shell is a key computational domain in
both computational geophysics and solar–terrestrial physics
(Kageyama & Sato 2004; Kageyama 2005; Yoshida &
Kageyama 2004; Usmanov & Dryer 1995; Usmanov 1996; Wu
et al. 1999; Usmanov & Goldstein 2003; Linker et al. 1999;
Odstrcil et al. 2002; Feng et al. 2005; Hayashi 2005; Shen et al.
2007). Simulations in these fields such as geodynamo, man-
tle convection, global circulation of the atmosphere, and space
weather modeling from the Sun to Earth are all performed in
spherical shell geometry, such as (r, θ, φ) with radius r between
some intervals (for example, r0 � r � r1, 0 � θ � π , and
0 � φ � 2π ), if defined in the spherical coordinates.

The most convenient grid system for solar wind modeling
is the latitude–longitude grid under spherical shell geome-
try, which is especially welcomed for numerical schemes for
governing equations in the spherical polar coordinates (Us-
manov & Dryer 1995; Usmanov 1996; Wu et al. 1999; Us-
manov & Goldstein 2003; Linker et al. 1999; Odstrcil et al.
2002; Feng et al. 2005; Hayashi 2005; Shen et al. 2007)
since its orthogonality is expected from numerical reasons.
The grid mesh of the latitude–longitude grid is uniform when
it is seen in the computational space of the spherical surface
S = {(θ, φ), 0 � θ � π , 0 � φ � 2π} but it is in fact non-
uniform when observed in real space. This is a feature common
to the grid mesh in the spherical shell. Even if the numerical
schemes are implemented in Cartesian or cylindrical coordi-
nates (Tanaka 1994, 1995, 1999, 2000; Groth et al. 2000; Cohen
et al. 2008; Feng et al. 2007; Hu et al. 2008; Kleimann et al.
2009; Nakamizo et al. 2009), the computational domain used

in solar wind modeling has to approximate the spherical shell
geometry.

Intuitively, the Sun’s geometry, which is obviously spherical
shaped, would suggest the use of spherical coordinates (r, θ, φ),
especially since the radial convergence of lines of constant θ, φ
can entail the extra advantage of enhanced spatial resolution
near the Sun’s surface. But, in such a spherical computational
domain, as is well known, there exist two crucial numerical
problems: the coordinate singularity and the grid convergence
near the poles. In the latitude–longitude grid, the existence
of the coordinate singularity arises on the north pole θ = 0
and the south pole θ = π , which by using L’Hospital’s rule
near the poles leads to three different forms for three local
regions of the spherical surface S: ∇ = ( ∂

∂r
, ∂

r∂θ
, 1

r sin θ
∂
∂φ

) for
the local region (θ, φ), 0 < θ < π , 0 � φ � 2π without
the poles, ∇ = ( ∂

∂r
, ∂

r∂θ
, 1

r
∂2

∂θ∂φ
) for the north pole, and ∇ =

( ∂
∂r

, ∂
r∂θ

,− 1
r

∂2

∂θ∂φ
) for the south pole. This observation prompts

us to devise the numerical scheme for the MHD equations in
three parts: a low latitude–longitude region without the poles,
the north pole, and the south pole, which results in coding three
different subroutines for numerical computation of discretized
equations. This may destroy the hyperbolicity of our hyperbolic
system such as MHD equations and uniform difference schemes
cannot be directly applicable. In addition, this also increases the
complexity of the computer programs.

The grid convergence near the poles is another problem in the
latitude–longitude grid of spherical coordinates. The grid con-
vergence requires a strict limitation on the time-marching step
�t in time integration schemes. As θ → 0 or π near the poles,
the metric factor 1/(r sin θ ) (of the φ-component of the spherical
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gradient operator ∇) becomes extremely large with a constant
grid spacing �φ in the longititudinal direction. In practice, the
grid convergence brings us more difficulties than the coordinate
singularity due to both the grid redundancy and the severe time-
step constraint (especially for large-scale numerical simulations
with fine grids) imposed by the Courant–Friedrichs–Levy (CFL)
stability condition.

For spherical coordinates, this means that enhancing spatial
resolution at small r, however desired for physical reasons,
would yield Δt much smaller than what the CFL criterion
would require for most parts of the computational domain so
that such a small time step seems impractical to be realized in
numerical study. While adaptive mesh refinement (AMR) can,
in principle, be used with spherical coordinates, its advantage
is overcompensated for by the fact that the convergence of grid
spacing implies unacceptably low CFL numbers.

The problems of small time steps with coordinate singularity
and grid convergence can be avoided by using Cartesian coordi-
nates, which can have equal cell spacing everywhere and thus do
save computing time on the larger cells. Many modern numer-
ical schemes are usually established in Cartesian coordinates
and can be directly used in solar wind modeling without any
further modification. For these reasons, Cartesian coordinates
(x, y, z) have also been widely used (Groth et al. 2000; van
der Holst & Keppens 2007; Kleimann et al. 2009), for which
numerics are faster, simpler (esp ecially with respect to multi-
dimensional extension), and more stable. This is especially true
for an MHD code built within a framework that allows for
Cartesian AMR (e.g., Groth et al. 2000; van der Holst &
Keppens 2007; Kleimann et al. 2009).

Evidently, the solar surface, described by a sphere of unit
radius located inside the computational domain, cannot be con-
sistent with any of the Cartesian coordinate surfaces. The inner
(solar surface) boundary yields the question of how these bound-
ary conditions are well realized on the grid since it contains the
surface from which the solar wind emanates, such that numeri-
cal artifacts imposed by an improper treatment of this boundary
will be quickly propagated through the entire computational do-
main. As pointed out by Kleimann et al. (2009), simple-minded
attempts to implement these inner boundary conditions, such
as keeping cell values inside the Sun (i.e., lower boundary)
fixed and integrating only those outside, will not work well and
will result in block-like artifacts at small radii (essentially trac-
ing the envelope of the set of grid cells considered “inside”)
where spherical contours would be better required for keeping
the problem’s symmetry. In order to adequately implement the
Sun’s spherical surface as an inner boundary on the Cartesian
grid, a weighted averaging procedure (Kleimann et al. 2009)
was devised in order to handle the huge gradients (most notably
of mass density) occurring at this boundary. To deal with the
spherical surface inner boundary, an alternative method is to
allow for arbitrary embedded boundaries in the Cartesian ge-
ometry by employing a cut-cell method (e.g., Zeeuw & Powell
1993; Groth et al. 2000; van der Holst & Keppens 2007). The
use of these procedures also contributes to a reduction of spuri-
ous departures from the problem’s underlying symmetry, which
results from the fact that the Sun’s spherical boundary surface
cannot be mapped to a Cartesian grid of finite cell spacing.

The polyhedron-splitting method seems very efficient for
generating the mesh grid on the spherical surface of a unit
sphere. In three-dimensional (3D) solar wind simulation, regular
octahedron (a Platonic solid composed of eight equilateral
triangles, four of which meet at each vertex) and dodecahedron

(a Platonic solid composed of 12 regular pentagonal faces, 20
vertices, and 30 edges, with 3 faces meeting at each vertex)
splitting grids can be constructed by starting with a regular
octahedron (Feng et al. 2007; Hu et al. 2008) and dodecahedron
(Nakamizo et al. 2009) inscribed inside the unit spherical
surface. These methods divide the sphere homogeneously into
triangles of the same size with no directional preference such
that grid singularities can be avoided and thus the computation
stability can be effectively achieved. In this way, by piling up
the triangle mesh along the heliocentric distance direction, a
3D grid system can be generated, which is unstructured in
(θ, φ) directions and structured in the radial direction. In the
computational domain of spherical shell, the “parallel” axis is
selected to be the radial direction. This 3D grid system can be
efficiently suitable for the finite volume method-like numerical
schemes, such as those successfully used formerly (Feng et al.
2007; Hu et al. 2008; Nakamizo et al. 2009). The grid mesh
generated by the polyhedron-splitting method is of sphere-
surface body fitting that can enable us to easily implement the
inner boundary conditions. But, its obvious disadvantage may
be its difficulty of paralleling in “(θ, φ)” directions.

The general mesh generation technique (Hartmann et al.
2008) seems to be a powerful tool for fitting our spherical shell-
shaped computational domain of solar wind modeling from the
Sun to Earth. The advantages regarding mesh generation in-
volve fully automated mesh generation based on the triangu-
lated geometry, cell refinement and cell coarsening, automatic
solution–AMR/coarsening at run time, and ideally shaped cells
in the interior of the computational domain. However, the gen-
eral mesh generation may seriously deform the cells in body-
fitted grids resulting in loss of accuracy and numerical errors due
to the quality of the triangulation. Typically, this method is also
tedious, and is not able to accurately yield curved 3D bound-
aries. The grid system from this method may also meet a parallel
problem in “(θ, φ)” directions. Automatic mesh generation, a
relatively new field, seems promising, but at present it has no
sound criteria for obtaining the high-quality mesh distribution.
Thus, up to now the application of the general mesh generation
has not been frequently seen in solar–terrestrial space modeling.

In order to overcome these problems mentioned above, over-
set grids (Rai 1986; Steger & Benek 1987; Chesshire & Henshaw
1990; Usmanov 1996; Yoshida & Kageyama 2004; Kageyama
& Sato 2004; Kageyama 2005) may be one of the best choices.
Among these overset grids, the Yin-Yang grid has been applied
successfully in simulations of geoscience (Yoshida & Kageyama
2004; Kageyama & Sato 2004; Kageyama 2005). The cubed
sphere (Ronchi et al. 1996), which constitutes a spherical sur-
face with six non-overlapping components, is another overset
grid recently used for the numerical study of mantle convection,
thermal convection, and shallow water (Hernlund & Tackley
2003; Choblet 2005; Chen & Xiao 2008). Based on the concept
of an overset grid (Chesshire & Henshaw 1990), Henshaw &
Schwendeman (2008) proposed a numerical solution approach
for nonlinear evolutionary partial differential equations in com-
plex 3D domains, where the domains are represented by over-
lapping structured grids, and block-structured AMR is used to
locally increase the spatial resolution. Usmanov (1996) also in-
troduced a composite mesh in his 3D solar wind modeling. His
composite mesh consists of three overlapping spherical meshes.
The first one is the usual spherical mesh with a limited exten-
sion in latitude (42◦ � θ1 � 138◦, 0◦ � φ1 � 360◦). The polar
axis of the mesh is directed along the solar rotation axis. Two
other meshes are introduced to cover the polar regions in both
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hemispheres. These meshes are fragments of spherical coordi-
nates (36◦ � θ2,3 � 144◦, 26◦ � φ2 � 144◦, and 216◦ � φ3 �
324◦) with the polar axis lying in the equatorial plane of the first
coordinate system (θ1 = 90◦, φ1 = 90◦).

Here, motivated by the Yin-Yang grid (Kageyama & Sato
2004; Yoshida & Kageyama 2004; Kageyama 2005), the cubed
sphere grid (Ronchi et al. 1996), and the successful application
of the polyhedron-splitting grid (Feng et al. 2007; Hu et al. 2008;
Nakamizo et al. 2009), a six-component grid system for solar
wind MHD modeling is proposed for our three-dimensional
Solar-InterPlanetary Conservation Element/Solution Element
(SIP-CESE) MHD model (Feng et al. 2007, 2009; Hu et al.
2008; Zhou et al. 2008; Zhou & Feng 2008).

The paper is organized as follows. (1) The governing MHD
equations with volumetric heating consideration are described.
(2) We introduce the six-component grid system and transforma-
tion between two components. (3) We give some improvements
for a SIP-CESE MHD model with a multiple time-stepping
method, Courant-number insensitive method, and multigrid
method for the Poisson solver to assure the soloidinal condi-
tion (i.e., ∇ · B) is satisfied. (4) Initial and boundary conditions
are specified. (5) Numerical results for steady-state solar wind
structure of Carrington rotation (CR) 1911 are displayed. (6)
We present conclusions and discussions.

2. MODEL DESCRIPTION

2.1. Governing Equations

The solar wind evolution is governed by the modified
MHD equations. By splitting the magnetic field into a time-
independent potential magnetic field B0 and a deviation B1
(Ogino & Walker 1984; Tanaka 1994), we can write the
solar–interplanetary governing MHD system as

∂ρ

∂t
+ ∇ · ρu = 0

∂ρu

∂t
+ ∇ ·

[
ρuu + I

(
p +

1

2
B2

1 + B1 · B0

)

− B1B1 − B1B0 − B0B1

]

= j0 × B0 + ρ [g − Ω × (Ω × r)] − 2ρΩ × u + Sm,

∂e1

∂t
+ ∇ ·

[
u

(
e1 + p +

1

2
B2

1 + B1 · B0

)
− (u · B1)(B1 + B0)

]

= −B1 · ∂B0

∂t
+ E · j0 + ρu · [g − Ω × (Ω × r)] + Qe,

∂B1

∂t
+ ∇ · (uB − Bu) = −∂B0

∂t
, (1)

where

E = u × B, j0 = ∇ × B0, and e1 = 1

2
ρu2 +

p

γ − 1
+

1

2
B2

1

the latter of which corresponds to the modified total energy
density consisting of the kinetic, thermal, and magnetic energy
density (written in terms of B1). A factor of 1/

√
μ is included

in the definition of B. Since B0 is constant in time, many terms
about B0 on the right-hand side will vanish.

Here, ρ is the mass density, u = (u, v,w) are the velocities
in the x-, y-, and z-directions, p is the thermal pressure, and
B = B0 + B1 denotes the total magnetic field consisting of
the time-independent potential magnetic field B0 and its time-
dependent derived part B1. t and r are time and position vectors

originating at the center of the Sun, g = −GM/r3 ·r is the solar
gravitational force, Ω is the solar angular speed, and γ is the
ratio of specific heats. ρ, u, p, B, r, t, and g are normalized by
the characteristic values ρS, a0, ρSa

2
0,

√
ρSa

2
0, RS, RS/a0, and

a2
0/RS , where ρS and a0 are the density and sound speed at the

solar surface. The solar rotation is considered in the present
study with angular velocity |Ω| = 2π/26 rad day−1 (here
normalized by a0/RS). For γ , similar to that of Wu et al. (1999),
a variable polytropic index is used:

γ =
⎧⎨
⎩

1.05, r/RS � 5

1.05 + 0.03(r/RS − 5), 5 � r/RS � 22

1.56, r/RS > 22,

Sm and Qe stand for the momentum and energy source terms,
which are responsible for acceleration and heating of the solar
wind and will be described later.

The solar wind evolution is calculated in a reference frame
of heliographic coordinates corotating with the Sun. For this
reference coordinate system we use (r, θ, φ) for the position
of a point in solar-interplanetary space and (x, y, z) is used to
express its corresponding Cartesian coordinates. Sometimes, the
analysis of computational results is carried out in the coordinate
system at rest to remove these rotational effects.

2.2. Determination of the Momentum Source Term Sm
and the Energy Source Term Qe

Solar wind heating/acceleration has long been debated by
scientists for long (Aschwanden 2004; Aschwanden et al. 2008).
Since the creative work by Pneuman & Kopp (1971) empirically
describing the source terms for the deposition of energy and/or
momentum into the solar wind, many works have been devoted
to the numerical study of producing solar steady-state conditions
(e.g., Usmanov 1993; McKenzie et al. 1997; Mikić et al. 1999;
Suess et al. 1996, 1999; Wang et al. 1998; Wu et al. 1999; Groth
et al. 2000; Feng et al. 2005, 2007; Zhou et al. 2008; Kleimann
et al. 2009; Nakamizo et al. 2009).

To mimic the effects of energy absorption above the transition
region—thermal conduction, radiative losses, coronal heating,
and solar wind acceleration—these models usually use spatial
profiles as the source terms for the deposition of the energy
or momentum by exponentials in radial distance, such as by
an ad hoc volumetric heating function of exponential decaying
form which originated with Hartle & Barnes (1970). The thermal
conduction term of Spitzer type ∇(ξT

5
2

∇T ·B
B2 )·B for collisionless

regimes has also been considered in the heating source term by
some authors (e.g., Suess et al. 1996; Wang et al. 1998; Lionello
et al 2001; Endeve et al. 2003; Li et al. 2005).

In some models, the energy and momentum exchange be-
tween the solar wind plasma and large-scale Alfvén wave
(Jacques 1977; Dewar 1970; Barnes 1992; Usmanov et al. 2000;
Usmanov & Goldstein 2003) has been considered for heat-
ing and accelerating the solar wind. For instance, Usmanov
et al. (2000) and Usmanov & Goldstein (2003) used a short-
wavelength Wentzel–Kramers–Brillouin approximation of the
Alfvén wave turbulence to mimic the energy deposit for solar
wind heating and acceleration.

The well-known Wang–Sheeley–Arge (WSA) model (Arge
& Pizzo 2000; Arge et al. 2004), a relationship between the flux
tube expansion factor fS and satellite observations of the solar
wind speed, has been used to drive the solar wind background
simulation. The WSA model has been currently used in the
kinematic HAFv.2 model (Fry et al. 2003; Smith et al. 2009) to
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obtain the solar wind background. Furthermore, Roussev et al.
(2003) and Cohen et al. (2007) used the WSA model as an
input to present an improved 3D MHD study for the solar wind,
where the processes of turbulent heating in the solar wind are
characterized by a varied polytropic index. Using this method,
Cohen et al. (2007, 2008) are able to reproduce well the fast and
slow plasma streams of the solar wind.

In order to obtain the distributions of the coronal density and
temperature, by using the observed solar photospheric magnetic
field and K-coronal brightness, the self-consistent structure of
the distributions of the coronal density and temperature on the
source surface at 2.5 RS is obtained with the help of MHD
equations (Wei et al. 2003). Using the self-consistent source
surface structures as inputs, Feng et al. (2005) and Shen et al.
(2007) develop a 3D MHD code (COIN-TVD MHD model) for
the study of the ambient solar wind from the source surface to
the Earth or beyond.

Although significant progress has been seen in this area, a
sound mathematical description of the 3D topological structure
of the interplanetary magnetic field (IMF) used in numerical
modeling which affects the energy transfer process in the
heliosphere does not exist.

In order to empirically specify the energy and momentum
source term to take into account the magnetic field topology
effects, we follow the work of Nakamizo et al. (2009) on the
expansion factor “fS” in the volumetric heating function and
momentum source term. Thus, the volumetric heating function
and momentum source term are

Qe = Q1 exp

(
− r

LQ1

)
+ Q2

(
r

RS

− 1

)
exp

(
− r

LQ2

)

+ ∇
(

ξT
5
2
∇T · B

B2

)
· B,

Sm = M

(
r

RS

− 1

)
exp

(
− r

LM

)
. (2)

Here, r is the heliocentric distance, Q1,Q2 and LQ1 , LQ2 are
the intensity and decay height of heating, T is the temperature,
and M and LM are the intensity and the decay height of the
momentum addition. A Spitzer type thermal conduction has
been added in the third term of Qe and we choose ξ = 5εp =
1.6 × 10−12Jm−1s−1K−7/2 according to Endeve et al. (2003).

However, our approach is slightly different from that of
Nakamizo et al. (2009). We consider the topology of the
magnetic field expansion factor fS and the minimum angular
separation θb between an open field foot point and its nearest
coronal hole boundary. Specifically, we assume that Q2 =
Q0Ca,M = M0Ca , where Ca = C ′

a/max(C′
a) with C ′

a =
(5.8−1.6e[1−(θb/8.5)3])3.5

(1+fS )2/7 . Some empirical functions with various free
parameters, similar to the above formula, have been employed
to derive the solar wind speed near the Sun (Arge et al. 2004;
Owens et al. 2005). Here, the constant values of Q1, Q0, and
M0 are 1.5 × 10−9 J m−3 s−1, 1.18 × 10−7 J m−3 s−1 and
7.9 × 10−14 Nm−3, respectively. LQ1 , LQ2 , and LM are set to
be 1 RS. The expansion factor (Wang & Sheeley 1990) reads
fS = (RS

r
)2 BRS

Br
where RS and r are the solar radius and the

distance from the solar center, and BRS
and Br are magnetic

field strength at the solar surface and at r. The idea is motivated
by the observation that there exists a close relationship between
the solar wind velocity and the inverse of the expansion factor
(Levine et al. 1977; Wang & Sheeley 1990) and the angular
distance θb distinguishes the high-speed solar winds from the

low-speed solar wind (high-speed stream originating from the
center of an open field region has large θb and low-speed stream
from the hole boundary has a small θb).

Here we use the potential field source surface (PFSS) model
(Luhmann et al. 2002; Zhao et al. 2006; Hu et al. 2008) to
determine the expansion factor fS and θb and choose the source
surface at 2.5 RS. In the heating source term, we provide fS
and θb with additional meanings, that is, we allow them to
have a 3D distribution from the solar surface at 1 RS to the
source surface at 2.5 RS. For a given point O = (r, θ, φ)
in the open field region from 1 RS to the source surface
at 2.5 RS , the value of fS at this point is defined to be
fS(r, θ, φ) = ( RS

RSS
)2 BRS

(RS,θS ,φS )
BRSS (RSS ,θSS ,φSS )

where RS and RSS are the
solar radius and the source surface radius, and BRS

and BRSS

are radial magnetic field strength at the solar surface and at RSS.
Here, (θS, φS) and (θSS, φSS) are the photospheric coordinates
and the source surface coordinates of the field line that passes
through the point (r, θ, φ). During this procedure, the three
points (RS, θS, φS), (r, θ, φ), and (RSS, θSS, φSS) are lying on
the same field line. When O = (r, θ, φ) is located at the source
surface, that is, r = 2.5RS , fS has its usual meaning as the
expansion factor. By this definition, fS has the same value along
the magnetic field line passing through point O. The value of
θb at this point is just the minimum angular separation between
point O and its nearest open-closed field boundary on the surface
r. Keeping these additional meanings in mind, we here have
three-dimensional distribution of fS and θb depending on (r, θ, φ)
in the region 1RS � r � 2.5RS for our heating source terms.
Beyond 2.5 RS, fS and θb take their distributions on the source
surface.

3. GRIDDING SYSTEM

3.1. Six-component Mesh Grid System in the Computational
Domain of the Spherical Shell

We introduce a composite mesh that consists of six identical
component meshes to envelope a spherical surface with partial
overlap on their boundaries (Figure 1). Each component grid is
a low-latitude spherical mesh, which is defined in the spherical
coordinates by

(
π

4
− δ � θ � 3π

4
+ δ

)
∩

(
3π

4
− δ � φ � 5π

4
+ δ

)
, (3)

where δ is proportionally dependent on the grid spacing entailed
for the minimum overlapping area. Each component is confined
by the same region as that in Equation (3) but in different spher-
ical coordinates. We define the red-colored spherical mesh in
Figure 1 as our reference heliographic or Cartesian coordi-
nates. The relations between our reference heliographic co-
ordinates C1 and other coordinates Cj (j = 2, 3, 4, 5, 6)
are denoted in the Cartesian coordinates by (x2, y2, z2) =
(y1,−x1, z1), (x3, y3, z3) = (−x1,−y1, z1), (x4, y4, z4) =
(−y1, x1, z1), (x5, y5, z5) = (z1, y1,−x1), (x6, y6, z6) =
(−z1, y1, x1), where (x1, y1, z1) are the Cartesian coordinates
of the red-colored part associated with reference Cartesian co-
ordinates; (x2, y2, z2), (x3, y3, z3), (x4, y4, z4), (x5, y5, z5), and
(x6, y6, z6) denote those of green-colored, blue-colored, cyan-
colored, yellow-colored, and purple-colored parts, respectively,
as labeled in Figure 1. From these Cartesian coordinate trans-
forms, we can easily get their relationships in their associated
spherical coordinates. For spatial discretization, we define the
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Figure 1. Basic six-component grid: (a) a spherical overset grid consisting of six-component grids and (b) a partition of a sphere into six identical components with
partial overlaps. Each component grid is a rectangle in the (θ, φ) space.

mesh point on each component C�(� = 1, . . . , 6) as

θ�
j = θmin + jΔθ, j = 0, 1, . . . , Nθ + 1

φ�
k = φmin + kΔφ, k = 0, 1, . . . , Nφ + 1

and
Δθ = (θmax − θmin)/(Nθ − 1)

Δφ = (φmax − φmin)/(Nφ − 1),

where Nθ and Nφ are the mesh numbers of the latitude
and longitude, respectively. θmin = π

4 , θmax = 3π
4 , φmin =

3π
4 , φmax = 5π

4 . For the three-dimensional six-component mesh,
the construction is straightforward. The mesh grid in the r-
direction as shown in Figure 2 is set up by stacking the basic
six-component grids shown in Figure 1 in the r-direction by
r(1) = 1RS , r(i + 1) = r(i) + Δr(i), where i = 1, . . . , Nr . The
grid spacing on the spherical surface is quasi-uniform, and the
ratio of the minimum grid spacing over maximum grid spacing is
approximately 0.707. For the spherical surface, the overlapping
region between component grids is at least two grid sizes, i.e.,
δ = Δθ .

In the present work, the parallel implementation in the
whole computational domain of our simulated region is real-
ized by domain decomposition of six-component grids based
on the spherical surface and radial direction partition. In or-
der to enhance the resolution in the “sphere” and radial direc-
tion we devise six parts among radial parallel decomposition:
1–3.5 RS, 3.5–10 RS, 10–25 RS, 25–75 RS, 75–166 RS, and
166–247 RS with the facility of multiple time stepping inte-
gration (to be given in Subsection 4.2 below), and the fol-
lowing grid partitions are employed: for 1–25 RS, Nφ =
Nθ = 2 × 25 − 1, Δr(i) = 0.01RS if r(i) < 1.1RS ; Δr(i) =
min(A × lg(r(i − 1)), Δθ × r(i − 1)) with A = 0.01/ lg(1.09)
if r(i) < 3.5RS ; and Δr(i) = Δθ × r(i − 1) if r(i) > 3.5RS . For
25–75 RS, Nφ = Nθ = 3×25 −1 and Δr(i) = Δθ ×r(i − 1). For
75–166 RS, Nφ = Nθ = 2×26−1 and Δr(i) = Δθ×r(i − 1). For
166–247 RS, Nφ = Nθ = 3 × 26 − 1 and Δr(i) = Δθ × r(i − 1).
Hereafter, such defined subdomains will be called C

q

� , where
�, q = 1, . . . , 6. We set the innermost region at the solar sur-
face, and the outermost region corresponds to the sphere with its

Y
X

Z

Figure 2. 3D six-component grid for spherical shell geometry, formed by
stacking the six-component grids (Figure 1) in the r-direction.

radius 247 RS. As a result, for 1–25 RS, the angular resolution
is about 1.◦4 in the latitudinal and longitudinal directions; for
25–75 RS, the angular resolution is about 0.◦95 in the latitudinal
and longitudinal directions; for 75–166 RS, the angular resolu-
tion is about 0.◦71 in the latitudinal and longitudinal directions;
for 166–247 RS, the angular resolution is about 0.◦48 in the lat-
itudinal and longitudinal directions, and a spatial resolution in
the radial direction gradually varies from 0.01RS at the inner
boundary on the solar surface to 1.8RS near 1 AU at 215RS .

Up to this point we have finished the description of our mesh
grid system in the computational domain of the spherical shell
0 � θ � π, 0 � φ � 2π and 1RS � r � 215RS or beyond for
solar-interplanetary modeling.

It is evident that the six-component composite mesh has the
following advantages: (1) the decomposition of the spherical
shell owns six identical regions with the same metric and
the component grids can be transformed into each other by
coordinate transformation such that we can make efficient and
concise programs, (2) each component grid is just a regular



No. 1, 2010 3D SOLAR WIND MODELING BY A SIP-CESE MHD MODEL 305

low-latitude part of the latitude–longitude grid such that various
program resources in the spherical or the Cartesian coordinates
grid can be used directly, (3) the boundary or internal border
value in the overlapping area can easily be determined by an
interpolation from its neighbor component grids according to
the related geometrical positions of component grids, (4) the
parallelization can be efficiently implemented both in the radial
direction and “(θ, φ)” directions, and (5) the six-component
composite mesh is of sphere-surface body-fitting that enables us
to easily implement the inner boundary conditions at the solar
surface prescribed for solar wind modeling. These properties
have been shared by the Yin-Yang grid (Kageyama & Sato
2004) and the cubed sphere grid (Ronchi et al. 1996).

3.2. Vector Transformation Formulae Between Field Vectors
Among Six-component Grids

As Figure 1 indicates, if uj = (uj , vj , wj ) is used to
express a velocity vector defined on the jth part Cj (j =
1, 2, 3, 4, 5, 6) of the six-component composite grid, then we
will have the following relations among the adjacent parts:
uj = (vi,−ui, wi), where (i, j ) = (1, 2), (2, 3), (3, 4), and
(4, 1). uj = (−vi, ui, wi), where (i, j ) = (2, 1), (3, 2), (4, 3),
and (1, 4). uj = (wi, vi,−ui), where (i, j ) = (1, 5) and (6, 1).
uj = (−wi, vi, ui), where (i, j ) = (5, 1) and (1, 6). u5 =
(w4,−u4,−v4), u4 = (−v5,−w5, u5), u6 = (−w2, u2,−v2),
u2 = (v6,−w6,−u6), u5 = (w2, u2, v2), and u2 = (v2, w2, u2).
uj = (wi,−vi, ui) with (i, j ) = (3, 5) and (5, 3). uj =
(−wi,−vi,−ui) with (i, j ) = (3, 6) and (6, 3). u6 =
(−w4,−u4, v4), and u4 = (−v6, w6,−u6).

For other five components to component 1, we have the fol-
lowing relations: u1 = (−v2, u2, w2), u1 = (−u3,−v3, w3),
u1 = (v4,−u4, w4), u1 = (−w5, v5, u5), and u1 =
(w6, v6,−u6). For vector transformation from component 1
to other five components we know that u2 = (v1,−u1, w1),
u3 = (−u1,−v1, w1), u4 = (−v1, u1, w1), u5 = (w1, v1,−u1),
and u6 = (−w1, v1, u1). For a magnetic field vector, we have
the same formula.

4. NUMERICAL IMPROVEMENTS FOR THE SIP-CESE
MHD MODEL

A novel SIP-CESE MHD model has been developed and
used for 3D solar wind modeling and solar transient events
from the Sun to Earth (Feng et al. 2007; Hu et al. 2008;
Zhou et al. 2008; Zhou & Feng 2008; Feng et al. 2009).
Here, the SIP-CESE MHD model will be carried out on our
newly introduced six-component grid system using governing
Equations (1). Following the SIP-CESE MHD method given by
Feng et al. (2007), solving the governing Equations (1) leads us
to the discretized integral equation Φ(U)(≡ U − Δt

2 η(U)) = UH

and its iteration procedure for the corresponding system of linear
equations

∂Φ(U)

∂U(i)
(U(i+1) − U(i)) = −(Φ(U(i)) − UH ) (4)

for the unknown U(i+1) − U(i), i = 0, 1, 2, . . .. Here, rather than
actually computing the inverse of this 8 × 8 Jacobian matrix
∂Φ(U)
∂U(i) like Equation (17) of Feng et al. (2007), one can directly

solve Equation (4) by “intel MKL” with the Fortran library
function4 according to William et al. (1997).

4 http://software.intel.com/en-us/articles/intel-math-kernel-library-
documentation/

In code programming, we can directly code the governing
equations in each component grid as they are formulated. Mean-
while, we can take the advantage of using various resources
available, such as mathematical tools and program libraries in
the Cartesian or spherical coordinates. For the parallel com-
puting, it is natural to divide the computational task into six
parts, that is, we can realize the parallel in the “(θ, φ)” direc-
tions. Because the component grids are identical, a balance of
the computational loads between the processors can be per-
fectly achieved. When we have 6N processors, we decompose
the radial direction of each component grid into N blocks for N
processors each. As done before (Feng et al. 2007), the domain
decomposition in the radial direction is simple and straightfor-
ward in each component grid since it is a rectangular box in the
computational space of (r, θ, φ).

In the following subsections, we will give other improvements
for the numerical aspects of the SIP-CESE MHD model.

4.1. Courant-number Insensitive Method

As demonstrated by Chang & Wang (2003), the local grid
Courant numbers (CFL) ν, generally affect the accuracy of
the numerical solution computed from the CESE scheme by
using a globally fixed time marching step, and a huge disparity
in ν across the non-uniform mesh makes the solutions highly
dissipative in regions where ν � 1. In solar wind simulations,
the grid points are accumulated heavily near the Sun due
to the spherical shell geometry of the computational domain,
and the plasma flow and magnetic field vary over many orders
of magnitude in the solar–terrestrial space. Such distributions
of mesh grids and physical parameters lead to a huge disparity
in ν across the mesh. Thus, making the numerical solution
less insensitive to variation in ν is necessary to get rid of
the excessive numerical dissipation caused by small ν and
achieve a higher numerical accuracy. To this end, we employ a
multi-dimensional Courant-number insensitive scheme (CNIS)
for Euler solvers proposed by Chang & Wang (2003) to our
model by re-designing the procedure for the calculation of the
spatial derivatives Umx, Umy , and Umz as follows. As shown
in Figure 3(a), assume that MA1 is the centroid of octahedron
QB5B6B7B8A1, and PA1 is a point on the line segment MA1A

∗
1

defined by
xPA1 = xMA1 + ν(xA1 − xMA1 )

yPA1 = yMA1 + ν(yA1 − yMA1 )

zPA1 = zMA1 + ν(zA1 − zMA1 ),

where ν represents the grid CFL at Q∗. The other five corre-
sponding points PA2, PA3, PA4, PA5, and PA6 can be similarly
given. The values at PA1, PA2, PA3, PA4, PA5, and PA6 are cal-
culated from the Taylor expansion at A∗

1, A
∗
2, A

∗
3, A

∗
4, A

∗
5, and

A∗
6, respectively. In CNIS, the spatial derivatives Umx, Umy ,

and Umz at Q∗ are obtained with a weighted central dif-
ference type reconstruction approach by basing the values
at PA1, PA2, PA3, PA4, PA5, and PA6, instead of the values at
A∗

1, A
∗
2, A

∗
3, A

∗
4, A

∗
5, and A∗

6 as done before (Feng et al. 2007).
From this procedure, it is easily seen that when ν → 0 (PA

approaches MA), it will approach the original non-dissipative
“a” scheme as shown by Chang & Wang (2003), while ν → 1
(PA approaches A∗), it switches to the so-called α scheme as we
used before (Feng et al. 2007). By the introduction of the PA
point, the numerical dissipative generated by small local CFL

http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation/
http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation/
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(a) (b) (c)

Figure 3. Schematic illustration of the CNIS method.

can be effectively reduced, which is helpful for yielding accurate
solutions.

For calculating the local CFL number ν, we use a simplified
3D grid CFL calculation as proposed by Yen et al. (2006). The
simplified 3D grid CFL, according to Yen et al. (2006), is defined
by enforcing the necessary condition of stability, namely, to
require the analytical domain of dependence to be bounded by
the numerical domain of dependence, associated with a solution
point. Here, both domains of dependence are defined as follows:
the numerical domain of dependence (Figure 3(b)) is the
octahedron by the neighbor solution points A∗

1, A
∗
2, A

∗
3, A

∗
4, A

∗
5,

and A∗
6. The analytical domain of dependence, as shown in

Figure 3(c), is a sphere with a radius of Vf Δt/2 (Vf is the local
speed of fast magnetosonic wave at Q∗) and with a center at point
P that is displaced by (−uΔt/2,−vΔt/2,−wΔt/2) from point
Q∗. To satisfy the necessary condition of stability, the sphere, the
analytical domain of dependence, has to be bounded by the eight
faces of the octahedron, the numerical domain of dependence.
Referring to Figure 3(c), the stability requirement is to enforce
the geometrical relation between the sphere and the triangle
A∗

3A
∗
4A

∗
6 by Q∗T +T S < Q∗R or ν1 = (Q∗T + T S)/Q∗R < 1,

where the line segments Q∗R and PG are perpendicular to the
triangle A∗

3A
∗
4A

∗
6, the line segment Q∗T is the projection of

Q∗P on Q∗R, and the length of PG equals to the sphere radius
Vf �t/2, T S is its projection on Q∗R. The corresponding ν2, ν3,
ν4, ν5, ν6, ν7, and ν8 can be similarly obtained by applying the
similar geometrical requirement for the other seven faces of the
octahedron. The local CFL ν at the solution point Q∗ is defined
to be the maximum value among ν1, ν2, ν3, ν4, ν5, ν6, ν7, and ν8. It
should be pointed out that as with done to the tetrahedron grid by
Yen et al. (2006), we calculate the simplified grid CFL for only
half time step marching instead of the formal grid CFL for a full
Δt in order not to avoid incurring extra mesh management effort.
The formal grid CFL for a full Δt involves the influencing cells
for a solution point larger than the immediate neighboring cells,
and the resulting grid CFL calculation is expensive and complex
to apply for our large-scale parallel computation application of
solar wind modeling with composite six-component grids.

4.2. Multiple Time Stepping

The plasma density, the Alfvén velocity, IMFs, the plasma
β, and spatial grid size vary over many orders of magnitude
from the Sun to Earth. This implies a large variation of the
CFL stability limit from the corona to interplanetary space.
Typically, the MHD time step is 1–3 s in the corona by the CFL

Figure 4. Multiple time stepping in the radial direction.

criterion, and it will be 100–300 s in interplanetary space. If
applying one uniform time step in the entire solar–terrestrial
domain, time accuracy stability limitations on the time step
in fine grid parts of the computational domain decrease the
performance of numerical methods and it may become much
more difficult to achieve efficient load balancing. The multi-
time-stepping method (van der Ven et al. 1997; Maurits et al.
1998) is to take different time steps in different parts of the grid
with large spatial grid difference, and it avoids the necessity of
taking a single time step in the entire computational domain
determined by the numerical CFL stability conditions (such as
on the smallest grid cells). The application of the multi-time-
stepping method can reduce the CFL number disparity that often
produces excessive numerical dissipation and saves computation
time.

Here, according to van der Ven et al. (1997) and Chang et al.
(2005), our multiple time-stepping algorithm is implemented in
six subdomains C

q

� with the radial direction partitions: 1–3.5 RS,
3.5–10 RS, 10–25 RS, 25–75 RS, 75–166 RS, and 166–247 RS
introduced before. First, we calculate the usual time step Δtq for
each subdomain C

q

� by using the CFL stability condition with
the formal Courant number 0.8. Then, the bulk time step Δtq in
the subdomain C

q

� for q > 1 is further constrained as follows:
Δtq+1 = MqΔtq , Mq = int(Δtq+1/Δtq) and q = 1, 2, 3, 4, 5, as
shown in Figure 4.

When the flow in C
q

� travels Mq iterations of Δtq , the flow in
C

q+1
� advances a single step of Δtq+1. In this way, the flow in C

q

�

advances as many time steps of Δtq as Mq × Mq+1 × · · · × M5
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for q � 5 in order to fit in the synchronization time step Δts
defined as the maximum of these bulk time steps (Δts = Δt6 in
our present paper). After each synchronization time level, the
bulk time step for each subdomain C

q

� is determined again.
For the overlapping boundary interface between subdomain

C
q

� and subdomain C
q+1
� , subdomain C

q

� needs to advance
Mq time steps of Δtq and subdomain C

q+1
� advances one

time step of Δtq+1 to arrive at the same time level. Hence,
at the same time level the boundary values are obtained by
simple cubic spline spatial interpolation, that is, the boundary
values of C

q

� are obtained by interpolating the associated C
q+1
�

values and vice versa. Otherwise, at every time step the qth
subdomain’s values at the boundary points (in subdomain C

q+1
� )

are determined by U(q)(t +mΔtq) = U(q+1)(t)+mΔtq(Ut )(q+1)(t),
where m = 1, . . . ,Mq − 1 and U(q+1)(t), (Ut )(q+1)(t) stand
for the values of U and its time derivative in subdomain
C

q+1
� at time t. However, in order to keep the space-time

conservation of fluxes, when the flow in C
q+1
� is advanced

we need to replace the (q + 1)th subdomain’s radial flux
flux(q+1)(t)Δtq+1 at its boundary points (in subdomain C

q

� ) by
(flux(q)(t) + flux(q)(t + Δtq) + · · · + flux(q)(t + (Mq − 1)Δtq))
Δtq , where flux(q)(t + mΔtq) is the radial flux in C

q

� at time
t + mΔtq .

It should be noted that in our such grid architecture, in order
to enforce flux conservation across an interface separating grid
zones of different time step sizes, we follow the concept and
methodology proposed by Chang et al. (2005). We have tested
the code with dipole or multiple magnetic field as input to find
that no spurious reflections are observed from the grid interface
and that this procedure is much simpler and more efficient.

4.3. Multigrid Method for Cleaning Magnetic Field Divergence

The numerical error, caused by the nonzero divergence of
the magnetic field ∇ · B, can influence the numerical stability
and accuracy in multi-dimensional MHD simulations. In order
to keep ∇ · B to an allowable numerical error, practioners of
MHD simulations have devised some efficient methods, such as
the constrained transport (CT) or CT/central difference (CD)
approach (Evans & Hawley 1988; Balsara & Spicer 1999;
Tóth 2000; Ziegler 2005; Londrillo & Del Zanna 2004; Stone
& Gardiner 2009; Li 2008; Cunningham et al. 2009; Lee
& Deane 2009), the reconstruction method (Balsara & Kim
2004; Londrillo & Del Zanna 2004; Li & Li 2004; Li 2008;
Balsara 2009; Balsara et al. 2009), the eight-wave formulation
(Powell et al. 1999), the mixed hyperbolic/parabolic correction
procedure with the so-called generalized Lagrange multiplier
method (Dedner et al. 2002; Feng et al. 2006; Fragile et al.
2005; Kleimann et al. 2009; Kataoka et al. 2009; Mignone et al.
2010), and the projection method (Brackbill & Baranes 1980;
Tóth 2000; Balbás et al. 2004; Balsara & Kim 2004; Crockett
et al. 2005; Tóth et al. 2006).

In this paper, we choose the projection method to eliminate
∇ · B, since it does not depend on specific differences and can
achieve a better result compared to other methods (Tóth 2000;
Balsara & Kim 2004). In this method, the B∗ field provided by
the base scheme in time step n + 1 is projected to a divergence-
free Bn+1 field by the following procedure. Since the magnetic
field can be expressed by the sum of a curl and a gradient
B∗ = ∇ × A + ∇Φ, we can arrive at a Poisson equation

∇2Φ = ∇ · B∗. (5)

With the help of solution Φ to Equation (5), the aim of the
projection method is to correct the magnetic field to

Bn+1 = B∗ − ∇Φ (6)

so as to force the numerical divergence of Bn+1 exactly zero.
Obviously, this correction does not affect the current density
J = ∇ × Bn+1 = ∇ × B∗. In order to solve the Poisson
Equation (5), Tóth (2000) used a stabilized biconjugate gradi-
ent iterative solver, while Tanaka (2003) suggested a conjugate
residual method. Tóth (2000) also showed that its order of accu-
racy cannot be worse than that of his base scheme or a CT/CD
type discretization therein. But, the usual method for the Poisson
equation is very time consuming, especially for our large-scale
simulation of solar–terrestrial space. Thus, a fast solver for the
Poisson equation is very necessary. Multigrid methods (Holst &
Saied 1993) are such highly efficient numerical techniques for
this purpose and can reduce low-frequency error components by
changing the grid size such that the global error disappears as a
local error on coarse meshes, which is suitable for our projection
procedure.

In this paper, we employ the approximate projection operator
(Rider 1998) with the full multigrid (F-cycle) method (Holst &
Saied 1993) described below to solve the Poisson Equation (5).
Usually, the approximate projection operator does not depress
high-frequency modes standing for a local decoupling of the
magnetic field as occurred for the decoupling of the velocity field
in numerical solutions of incompressible flows (Aprovitola &
Denaro 2007; Rider 1998). For robust consideration, filtering
is necessary, especially for long-term integrations. For this
purpose, after carrying out the cleaning procedure through
Equation (6), it is also advisable to have a diffusive term of
the form (Dedner et al. 2002; Crockett et al. 2005)

∂(∇ · B)

∂t
= η∇2(∇ · B),

which acts on the divergence of B(≡ Bn+1). This may be
described to eliminate a spatial derivative by pulling out a
divergence operator:

∂B

∂t
= η∇(∇ · B), (7)

where η = C (Δx)2

Δt
, Δx is the minimal grid spacing, Δt is the

time step, and C is a constant. A finite-difference approximation
(Rider 1998; Miller & Colella 2001; Crockett et al. 2005) may
be used to achieve a simple, single-step filter. In this paper, Δtq
is used in η for C

q

� and the constant C is taken to be 0.05.
The application of this filter (7) is twofold: it decreases the
cell-centered divergence and effective damping of checkerboard
modes (Dedner et al. 2002; Rider 1998; Miller & Colella 2001;
Crockett et al. 2005).

Thus, the use of Equations (5), (6), and (7) will conclude
our magnetic field divergence cleaning procedure used in the
present paper. In what follows, we introduce our F-cycle method
for solving the Poisson Equation (5).

In the present solar wind computation for solving Poisson
Equation (5) we use the F-cycle iteration by multi-cubic inter-
polation for both restriction and prolongation between grids of
different resolutions.

In Figure 5, numbers 1, 2, 3, 4, 5, and 6 stand for grid levels
from coarse to fine grids for subdomain C1

� . Level 1 is the
coarsest grid and Level 6 is the finest grid which is also our grid
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1 1 1 1 1 (nθ = nφ = 2 ∗ 20 − 1,nr = 3 ∗ 20 − 1)
* * * * *
* * * * *· · · ·
· · · ·2 2 2 2 2 2 2 2 (nθ = nφ = 2 ∗ 21 − 1,nr = 3 ∗ 20 − 1)

* * * *
* * * *

. . .
. . .

3 3 3 3 3 3 (nθ = nφ = 2 ∗ 22 − 1,nr = 3 ∗ 21 − 1)
* * *
* * *

. .
. .

4 4 4 4 (nθ = nφ = 2 ∗ 23 − 1,nr = 3 ∗ 22 − 1)
* *
* *

.
.

5 5 (nθ = nφ = 2 ∗ 24 − 1,nr = 3 ∗ 23 − 1)
*
*
6 (nθ = nφ = 2 ∗ 25 − 1,nr = 3 ∗ 24 − 1)

Figure 5. Schematic diagram of the F-cycle iteration and grid levels on subdomain C1
� .

employed in the present paper. Similar grid level charts follow
for C

q

� . In this figure, a star “∗” means prolongating the solution
from the coarse grid to the fine grid, while a dot “·” denotes
restricting the solution from the fine grid to the coarse grid.
Figure 5 indicates that we carry out one F-cycle from Level 1
to Level 6 through the following prolongations and restrictions:
1 → 2 → 1 → 2 → 3 → 2 → 1 → 2 → 3 → · · · → 5 → 6.
In each grid level, the Gauss–Seidel method is used as a
smoother to reduce errors. In the program, two F-cycles have
been run when physical time is less than 15 hr, three F-cycles
have been performed from 15 to 25 hr, and four F-cycles have
been performed after 25 hr. Along with the advancing time, the
error of divergence of the magnetic field is accumulated, and
more F-cycle runs have to be used in order to achieve a more
accurate solution to the Poisson equation and to further reduce
the divergence of the magnetic field, which will lead to more
computational time.

In order to facilitate the F-cycle iteration in our spher-
ical shell computational domain of solar–terrestrial space,
Equation (5) is solved on each part C

q

� (�, q = 1, . . . , 6) (in-
troduced in Section 3), conforming to the implementation of
multiple time stepping. While solving Equation (5) by multi-
grid, we do not parallelize the multigrid method in each C

q

� . If
we use a multi-processor to deal with the F-cycle method, the
size of the meshes in each processor at the coarser levels of the
multigrid cycle is quite limited (typically 8 or 16 cells). In this
case, most of the CPU time will be wasted in data exchanges
between processors. Solving Equation (5) in each C

q

� will give
us a proper time-cost/performance. In the present work, at each
new time step in C

q

� , ∇ · B∗ is sent to a certain process (as-
signed to subdomain C

q

� in our parallel implementation of the
solar–terrestrial space) to finish the F-cycle iteration, then the
obtained Φ through solving Equation (5) is dispatched to every
process associated with C

q

� , on which the cleaning procedure
(6) is done and then the filter (7) is used.

It should be mentioned that the Neumann boundary condition
is used only for the inner boundary at the solar surface, and for all
other boundaries the Dirichlet boundary condition is employed.
Meanwhile, our code for this F-cycle is modified from free
source codes available online5. In fact, our cleaning procedure
is performed for the time-dependent part of magnetic field B1.

Since the modified total energy e1 is an independent unknown
in our CESE method, after the implementation of the projection,
the only change may be the magnetic energy, which results in

5 http://www.cisl.ucar.edu/css/software/mudpack/

the variation or even the negative occurrence of the thermal
energy or specifically the temperature. In the extreme case
of plasma β � 1, the occurrence of negative pressure may
also appear. Thus, after the projection step, in order to avoid
numerical difficulty with the possible occurrence of negative
thermal pressure, the total energy in our simulation is adjusted
as

en+1
1 = e∗

1 +
(∣∣Bn+1

1

∣∣2 − ∣∣B∗
1

∣∣2)
/2 (8)

for the sake of numerical robustness, while the thermal energy
and temperature obtained by the base CESE scheme are kept
unchanged. The same procedure has been stated (Balsara
& Spicer 1999; Cunningham et al. 2009) for their flux-CT
algorithm to preserve thermal energy at the expense of energy
conservation.

In order to assess the ∇·B = 0 constraint numerically, as done
in Equation (18) by Feng et al. (2007), we define the following
error measurement as:

Error =
∑M

k=1

∫
V (24) |(∇ · B)k|dV∑M
k=1

∫
V (24) dV

where M is the number of mesh nodes in the computational
domain and V (24), which is similar to V (18) in Feng et al.
(2007), is a 24-faced polyhedron involved with the mesh grid in
the three-dimensional spatial region.

5. BOUNDARY CONDITIONS AND INITIAL
CONDITIONS

For numerical simulation of solar-interplanetary space prob-
lems in the whole spherical shell between 1 RS and 215 RS
or beyond, three types of boundary conditions need to be con-
sidered: horizontal boundary conditions at the six components’
borders in overset parts, lower boundary conditions at r = 1RS ,
and top boundary conditions at r = 215RS or beyond.

The boundary prescription on the inner or lower boundary
surface is a challenge: the lower boundary at solar surface 1
RS is situated at the subsonic/sub-Alfvénic region, thus the nu-
merical inconsistency will appear unless the proper treatment
is provided there. The projected normal characteristic method
(Nakagawa et al. 1987) imposes the boundary treatment satis-
fying both the underlying MHD equations and the prescribed
boundary constraints. By combining the projected normal char-
acteristic method and the solar wind mass flux limit derived
by Neugebauer (1999) from Ulysses, a modified version of this
method has been developed (Hayashi 2005; Hayashi et al. 2006).

http://www.cisl.ucar.edu/css/software/mudpack/
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Figure 6. Schematic diagram of (a) the boundary interpolation between C5 and C1 components and (b) the two-dimensional cubic spline interpolation on the C1
component.

Such a time-dependent inner boundary condition is used here
by limiting the mass flux escaping through the solar surface in
order to obtain the mathematical and physical consistency for
sub-Alfvénic fluid and produce more realistic plasma conditions
in the coronal hole and streamer.

Since the top boundary at 215 RS or beyond is in the
supersonic/super-Alfvénic region, here we use a nonreflecting
projected normal characteristic boundary condition that gives
more stable simulation (Wu et al. 1996, 2006).

For the horizontal (θ, φ) boundary or the internal border
between two components, according to the general overset
technique (e.g., Chesshire & Henshaw 1990), interpolations
are applied on the boundary of each component grid to set
the boundary values or the internal boundary condition. That
is, the horizontal boundary or internal border values of each
component grid are determined by interpolation from the
neighbor stencils lying in its neighboring component grid,
with the interpolation coefficients being derived by the relative
position of the boundary point in the stencils. As Figure 6(a)
shows, if a C5’s boundary point Q(j 5

hb, k
5
hb) lies in a neighboring

component C1, we first determine its corresponding coordinates
in the C1’s grid, for example, (j 1

0 , k1
0), then obtain the values

at Q(j 1
0 , k1

0) by means of interpolations of the known values at
C1’s grid points (j 1, k1)’s neighborhood to Q(j 1

0 , k1
0), and finally

transform the obtained values at Q(j 1
0 , k1

0) through the rotation

matrix, for instance, u(Q(j 5
hb, k

5
hb)) = ( 0 0 1

0 1 0−1 0 0

)
u(Q(j 1

0 , k1
0))

for vector field u, to get the corresponding value at the original
C5’s grid point Q(j 5

hb, k
5
hb). To be specific, in this paper, 16

grid points neighboring to Q(j 1
0 , k1

0) are used for our two-
dimensional bi-cubic spline interpolation (Figure 6(b)). First, we
obtain the values at the cross points A, B, C, and D along the j-
direction by using a one-dimensional cubic spline interpolation,
then we interpolate the Q(j 1

0 , k1
0) values along the k-direction

with the computed values at A, B, C, and D. Finally, for
the vector field we employ the rotation transform matrix to
get the corresponding value at point Q(j 5

hb, k
5
hb). That is, for

scalar variables, the interpolation is simply direct. However,

for vector fields, we need the rotation transformation between
different coordinates because the expressions of a vector in
each component grid are different. The boundary points in other
component grids could be achieved similarly. After the values
at these boundary points are known, we can calculate the whole
component region by the numerical procedure. As the numerical
tests will later show, using this interpolation to communicate
data across boundaries does not degrade the numerical accuracy
of the whole model.

In order to realistically generate the structured solar wind,
we specify the inner initial boundary magnetic field with the
observed line-of-sight photospheric magnetic field data. The
observed photospheric magnetic field from the Wilcox Solar
Observatory at Stanford University is used to deduce a 3D global
potential magnetic field as initial magnetic input. Parker’s solar
wind flow (Parker 1963) provides the initial distributions of the
plasma density ρ, gas pressure p, and the plasma velocity v.
Here, the initial solar surface temperature and number density
are set to be 1.3×106 K and 1.5×108 cm−3, respectively. Then,
our code is run in time-relaxation manner until a steady-state
equilibrium between flow and magnetic fields is achieved by
satisfying some error criteria (Feng et al. 2007).

6. NUMERICAL RESULTS FOR STEADY-STATE SOLAR
WIND STRUCTURE OF CR 1911

In this section, we present the 3D numerical results of
structured solar wind from the Sun to Earth for CR 1911, which
are obtained by executing the techniques introduced in the above
sections. Our model is run on a 456 core cluster (19 nodes with
each node having 24 cores run at 2.4 GHz). With the use of 156
MPI processes for CR 1911, it takes about 40 hr of wall time to
obtain a steady-state solution at the physical time 250 hr.

Figures 7 shows the magnetic field lines, radial velocity,
and number density on two different meridional planes at
φ = 180◦ − 0◦ and φ = 270◦ − 90◦. Figure 8 is the three-
dimensional magnetic field distribution in the solar inner corona
drawn by solid black lines while the arrowheads denote the
direction of the magnetic field lines, and the color contours
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Figure 7. Calculated steady solar coronal solution for computed magnetic fields, radial speed vr , and number density N on the meridional planes at φ = 180◦–0◦
(a, c) and φ = 270◦–90◦ (b, d), from 1 to 20 RS. The color contours stand for the radial speed and number density and streamlines denote the magnetic field lines.

XY

Z

2.00
1.84
1.67
1.51
1.35
1.18
1.02
0.85
0.69
0.53
0.36
0.20

N

Figure 8. 3D representation of the solar coronal magnetic field drawn as solid
black lines. The color contours represent the number density (unit: 108 cm−3)
on the solar surface.

represent the number density distribution on the solar surface.
The final relaxation solution has revealed the three-dimensional
asymmetrical streamer resulting in an arcade structure.

From Figures 7 and 8, we can see that a significant dipole
component dominates the large-scale coronal magnetic field,
which is a typical characteristic of the heliospheric magnetic
field during periods of solar minimum. In these field configura-
tions, magnetic field lines at high latitudes extend into interplan-
etary space to form coronal holes of high speed and low density.
As a result, the plasma from both polar coronal holes occupies
almost all of the heliospheric latitudes beyond 5 RS at which the
magnetic field is essentially open everywhere. While, at lower
latitudes around the equator, a helmet streamer stretched by the
solar wind can be observed within about three solar radii. Above
the steamer, we can see a thin current sheet between different
magnetic polarities. This scenario of the helmet streamer-current
sheet system is consistent with those depicted by Pneuman &
Kopp (1971) and Gosling et al. (1981).

Due to the proper inner boundary treatment of combining
the projected normal characteristic method and the mass flux
limit, the model can indeed generate reasonable contrasts of
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Figure 9. Coronal polarized brightness images from 2.3 RS to 6 RS computed from the simulation (top panels) and observed by LASCO C2/SOHO (bottom panels).
The top left and top right panels are the views projected on the meridional planes with φ = 180◦ − 0◦ and φ = 270◦ − 90◦, respectively. The bottom panels are the
observations made on July 5 and June 28, respectively.

the plasma density (also temperature and velocity omitted here)
between the coronal hole and streamer as shown in Figure 8.
This point has been made by Hayashi (2005) and Hayashi et al.
(2006). The fixed boundary condition will of course smear the
density structure on the solar surface.

The coronal polarized brightness measurements are often
used to diagnose the coronal density structure. The top panels
in Figure 9 present the synthesized polarized brightness images
from 2.3 RS to 6 RS projected on the meridional planes with
φ = 180◦–0◦ and φ = 270◦–90◦, respectively, which are
computed from the 3D MHD simulation results. As we know,
CR 1911 starts on June 28 and ends on 1996 July 24. If we
assume that the coronal structure does not change significantly
within one CR, which is a reasonable hypothesis during the
period of solar minimum, then the coronal polarized brightness
images observed on July 5 and June 28 roughly correspond
to the top left and top right panels in Figure 9, respectively.
Thus, for comparison, two LASCO/SOHO observed polarized
brightness images are given in the bottom panels of Figure 9.
From these figures, we can see that a qualitative agreement
exists between the simulation results and the observations. The
most highlighted feature in the right column is the relatively
broad latitudinal extent of bright structures in the east limb.

This feature results from the projection effect of the high-
density regions between φ = 230◦ and φ = 280◦, which can
be seen clearly from the third subfigure in the left column of
Figure 10 and from the synoptic polarized brightness images
in both the east and the west limbs displayed in Figure 11.
These bright structures are also the demonstration of the tilt
of the magnetic field neutral line near this region. It should be
noted that there is a small latitudinal difference between the
bright structures obtained from simulations and observations.
The difference results of the fact that the observations made by
SOHO are about 7◦ north of the solar equator and the synthesized
images are viewed from 1 AU in the solar equator. The other
reason for this difference is due to the imperfect extrapolation
of the polar photospheric magnetic field (Arge & Pizzo 2000).
In addition, the distributions of high-density streamers in Figure
7 are consistent with the observation of LASCO C2 when
considering the little difference mentioned above. In summary,
we conclude that our simulation can reproduce the observed
coronal density structure well.

Figure 10 displays the space weather background synoptic
maps for the MHD steady-state solution on the different solar
surfaces at 2.5 RS, 20 RS, and 215 RS. This configuration is
due to the interaction between the magnetic field and Parker’s
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Figure 10. Contours of MHD steady-state solution on the different surfaces at 2.5 RS (left column), 20 RS (middle column) and 215 RS (right column). The top panel
denotes radial magnetic field Br with units Gauss, 10−6 T, and nT from left to right; the second panel is the radial speed vr with units km s−1; the third panel displays
the number density N with units 106 cm−3, 104 cm−3, and cm−3 from left to right; the bottom panel stands for temperature T with units 106 K, 106 K, and 105 K from
left to right.

Figure 11. Synoptic maps of the white-light-polarized brightness at the east (left) and west (right) limbs from LASCO C2 images.

solar wind flow field. Quantitatively, N and T decrease with
heliocentric distance while vr increases. The flow in the polar
regions is faster than that near the equatorial regions, and the
heliospheric current sheet (HCS) region is surrounded by higher
N. In the top panel of Figure 10, the neutral lines for the MHD
solution show significant magnetic shear, and the magnetic field
strength falls off along with heliocentric distance, but much less
than that of the potential field. The strong warped structure in
the streamer belt, located between 230◦ and 280◦ longitudes and
encompassed by the low plasma pressure region with both low N
and T, is spatially coincident with the extensions of the coronal
hole boundaries (shown as θb distribution in Figure 12(a)). By
examining the radial magnetic field, velocity, number density,
and temperature distributions at 2.5 RS and 20 RS, we recognize
that the speed and density patterns around the HCS and in the
polar holes are in agreement with the synoptic maps of LASCO
C2 in Figure 11. Also, the values of the number density and

radial speed at 2.5 RS and 20 RS, respectively, are of the same
magnitude as those shown in Figures 7 and 8 of Feng et al.
(2007), Figure 5 of Hu et al. (2008), and Figures 1 and 2 of
Wei et al. (2003). Additionally, the speeds at 2.5 RS and 20 RS
are supported by the results derived from the observations by
LASCO C2 and C3 (Wang et al. 1998; Porfir’eva et al. 2009),
by interplanetary scintillation (Breen et al. 2002), and by the
Ulysses solar corona experiment (Pätzold et al. 1997).

From the distributions of plasmas and the magnetic field at
215 RS in the right column of Figure 10, we can see that the
bimodal structure of the solar wind (a combination of uniform,
unipolar, and tenuous fast flows, with slow and relatively dense
slow wind for the solar minimum period) and even the width
of the slow wind band and the sharpness of velocity transitions
are reproduced well in the model. The absence of a significant
gradient of Br with respect to heliolatitude in fast flows is also
observed in this simulation.
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Figure 12. (a) Derived boundary of coronal holes mapped on the photosphere and (b) the expansion factors “fS” at 2.5 RS with φ = 180◦ from the MHD model (solid
line) and the PFSS model (dash line). (c) The bottom panel displays the distributions of the calculated radial velocity vr (unit: km s−1) at 5 RS from the steady-state
result by the MHD model, and (d) Wang–Sheeley relationship by the PFSS model.

By comparison with the four panels at 215 RS in the right
column of Figure 10, we would associate the fast solar speed
with the presence of an interaction region (high temperature,
high density, and intensive magnetic field). The interaction
region is approximately aligned with the Parker spiral direction.
From the warped structure of the HCS between 230◦ and 280◦
at 2.5 RS and beyond, the features of corotating interaction
regions (CIRs) can be seen clearly. At the southern flank of low-
speed stream around the HCS, there is a compression region
characteristic of steep gradients of density, temperature, and
radial magnetic field, which corresponds to the fast solar wind
overtaking the slow solar wind. At the northern flank there is
a rarefaction region and the physical quantities vary smoothly.
The rarefaction region is associated with the low-speed stream
following the high-speed stream. The different features of the
two regions can be seen more clearly from Figure 16. In addition,
we can also see that the maximum latitudinal width of the slow
wind flow region decreases approximately from 45◦ at 2.5 RS
to 25◦ at 215 RS. This behavior is a consequence of magnetic
pressure gradients.

In Figures 12(a) and (b) we compare the derived coronal
hole boundaries mapped on the photosphere and the expansion
factors “fS” at 2.5 RS with φ = 180◦ versus θ for the MHD
model (solid line) and the PFSS model (dash line). Following
Linker et al. (1999) and Riley et al. (2006), by identifying
the closed-field regions and the open-field regions through
tracing magnetic field lines on the lower boundary, a map

of the coronal hole boundaries obtained by the MHD model
and the PFSS model is presented in Figure 12(a). It is found
that the coronal hole boundaries produced by the MHD model
and the source-surface model are similar in this calculation.
While slight differences exist, the two techniques have achieved
the same qualitative characteristics for CR 1911. In particular,
the polar coronal holes have the same topological configuration
such as overall shape and span and have approximately the same
area. In Figure 12(b), the heliolatitude changes of expansion
factors “fS” at 2.5 RS with φ = 180◦ for the MHD model (solid
line) and for the PFSS model (dash line) bear the same patterns,
while the expansion factor from the MHD model is higher than
that from the PFSS model. Figures 12(c) and (d) also display
the distribution of the radial velocity vr at 5 RS from the MHD
model and the WSA model, the latter of which is calculated by
vr = 265 + 1.5

(1+fs )2/7 (5.8 − 1.6e[1−(θb/7.5)3])3.5 with the help of θb

and the expansion factor fs (Owens et al. 2005). By examining
this figure, we observe that the expansion factor of the MHD
model is higher than that of the PFSS model. This indicates that
the MHD model will give a large expansion of the magnetic
field and thus present a relatively low speed, which is further
confirmed by the radial speed variation in the bottom panel
of Figure 12. This can be interpreted physically in terms of
the pressure excised by the plasma that further spreads out the
magnetic field in the MHD simulation.

Figure 13 displays two cases of the heating coefficient
dependence on fS only and a combination of θb and fS.
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Figure 13. Meridional distribution at φ = 180◦–0◦ of heating coefficient (a) Ca and (b) Cb = 1
(1+fS )2/7 . The distributions of the calculated MHD steady radial speeds

vr (km s−1) on the surface at 5 RS with the heating coefficients, respectively, given by (c) Ca and (d) Cb.

Figures 13(a) and (b) are the distributions of the correspond-
ing heating coefficients Ca and Cb. They are associated with
just our two cases of heating coefficients with θb and without θb

if the exponential decaying factor is neglected from Qe and Sm.
Figures 13(c) and (d) show the MHD steady radial speeds

when the heating coefficients Ca and Cb are used in the
volumetric heating source terms. From this figure, it is easily
seen that θb plays an important role in the heating process. Ca
acts in a much wider open field region than Cb, and Ca is larger
than Cb. Correspondingly, the distributions of the MHD steady
radial speed vr on the surface at 5 RS with the heating coefficients
given by Ca and Cb have some differences such as a narrower
low speed region and a higher speed if θb is considered.

Figure 14 shows radial variations in the flow speed vr and
number density N from 1 RS to 20 RS versus heliocentric distance
at φ = 0◦ with θ = 60◦ by the solid line and θ = 2◦ by
the dashed line, which correspond to the open field region
and closed field region. Evidently, we have a high-speed and
low-density stream in the polar region (θ = 60◦, φ = 0◦). At
10 RS and above, the flow is super–Alfvénic and supersonic
nearly everywhere and changes very little. However, a low-
speed and high-density flow is present in the current sheet region
(θ = 2◦, φ = 0◦) and the velocity agrees with the profile of low
solar wind speed (Sheeley et al. 1997). The overall distributions
of velocity and density are similar to those obtained by Feng

et al. (2007), but the fast stream here is much higher due to the
addition of the heating and acceleration source terms.

It is clear from Figure 14 that heating has much effect on
the plasma distribution for an open field, but has little effect for
a closed region. That is, by setting the energy and momentum
intensity Q, M related to the expansion factor fs and the minimum
angular distance θb, the heating and acceleration mostly act on
the coronal hole and exert little influence on the closed region
of the streamer where the expansion factor goes to infinity.

Figure 15 for temporal evolution of error for ∇ · B defined
in Subsection 4.3 is plotted in the region from 1 to 26 RS, since
the magnetic filed in this region is strong. From the evolution of
|∇ · B| as shown in Figure 15, the use of the multigrid method
can keep the divergence-free condition in an error much smaller
than that without any special treatment (Feng et al. 2007). The
estimation of error for |∇ · B| is about 10−6 and continues to
be the same even after a long running time, and no obvious
large error accumulation from |∇ · B| appears. In our numerical
running, the error remains around 10−6 until the steady state is
reached, although large-time marching sees a slight increase as
shown by Figure 15(b). More F-cycles can greatly reduce this
error but will cost much CPU time.

Figure 16 shows the IMF lines of the steady state together
with the distribution of the radial solar wind speed in the solar
equatorial plane. The arrowheads denote the direction of the
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Figure 14. (a) Radial velocity profiles along heliocentric distance at two locations with different latitudes θ = 60◦ and θ = 2◦ at the same longitude φ = 0◦ and (b)
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Figure 15. Temporal evolution of error for ∇ · B during the calculation.

magnetic field line. The solar wind stretches the IMF outward
into Archimedean spirals due to the solar rotation and the IMF
freezing-in effect. The spirals coil more tightly in slow-speed
flow than in high-speed flow. For instance, calculated from
Figure 16, the angle between the radial direction and the IMF at
1 AU is 44◦ when the solar wind speed is 320 km s−1 and 38◦
when the solar wind speed is 560 km s−1. The conclusion that
the IMF lines coil more tightly in the slow stream has also been
pointed out by Odstrcil & Pizzo (1999).

Figure 17 gives the two-state nature of a polar diagram
of the computed solar wind speed at 1 AU as a function of
heliolatitude. Flow speed profiles are displayed in the meridional
plane (φ = 180◦–0◦). From it, we can clearly see a transition
from one solar wind region to another at the midlatitudes and
the width of transition is to some extent determined by the
thickness of the HCS. This simulation result is quite consistent
with Ulysses speed observations when normalized to 1 AU
(McComas et al. 1998; Groth et al. 2000; Usmanov et al. 2000).

In Figure 18, we make an analogous comparison with the 1 hr
averaged WIND plasma data. WIND was located in the ecliptic
plane near 1 AU (212 ∼ 213 RS) and observed a more complex

pattern of variations than those only partially reproduced by the
MHD solution. In Figure 18, there is an overall good agreement
between the simulations and the observations. The simulation
reproduces well the observed relative high-speed wind part
(>500 km s−1), together with structure variations. From these
comparisons, we can see that CIR-associated features, such as
observed enhancements of density, temperature, and magnetic
field magnitude in front of the high-speed wind or at the leading
edge of the high-speed wind, are reproduced well. The rate
of density enhancement and the slope of the rising solar wind
speed in the simulation are closer to those of the 1 hr averaged
data. However, some differences exist between the simulation
results and the observational data. One difference is the arrival
time of the fast wind. In the simulation, the fast wind is shifted
late about 1–2 days. The second discrepancy is the structure
of the solar wind speed in the last few days. The discrepancies
in the last few days partially come from the uncertainties of
the photospheric magnetic field measurements, the influence of
differential rotation of the photosphere, and the inconsistency
of the photospheric magnetic field at the beginning and ending
days of a CR due to its evolution.
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Figure 16. Calculated MHD steady inner heliosphere solution in the solar
equatorial plane from 20 RS to 215 RS. The color contours represent the radial
solar wind speed, and streamlines denote the magnetic field lines.

By the way, we can clearly see that the solar wind speed
obtained by the MHD simulation is closer to the observation
than that derived by the Wang–Sheeley relationship v =
267.5+410.0/f 0.4

S (Arge & Pizzo 2000). However, the advantage
of the MHD model over the WSA model is that the former
can provide all the physical parameters everywhere in the
computational domain, while the latter is used to predict the
background solar wind speed and the IMF polarity at 1 AU
(http://www.swpc.noaa.gov/ws/).

7. CONCLUSIONS AND DISCUSSIONS

The 3D SIP-CESE MHD model (Feng et al. 2007; Hu et al.
2008; Zhou et al. 2008; Zhou & Feng 2008; Feng et al. 2009) has
been greatly improved from the consideration of the following
aspects: grid system, CNIS method, time integration, magnetic
field divergence cleaning procedure, and volumetric heating.
For the grid system, we introduced a composite mesh that
consists of six identical component meshes to cover a spherical
surface with partial overlap on their boundaries. Like the Yin-
Yang grid (Kageyama & Sato 2004) and the cubed sphere grid
(Ronchi et al. 1996), the important features of the six-component
composite mesh are that these identical component grids with
overlapping boundaries can be obtained from each other by
coordinate transformation that makes the coding more efficient
and concise, and each component with the quasi-uniform grid
spacing is just a part of the latitude–longitude grid avoiding mesh
convergence and singularities at the pole regions. Meanwhile,
the grid system allows easy-paralleling not only in the “(θ, φ)”
directions but also in the radial direction. The CNIS method can
reduce high numerical dissipation in regions with small CFL
numbers and thus keep the accuracy of the solution.

In time integration, the multiple time-stepping method is used
by dividing solar–terrestrial space into six subdomains. This
method enhances the convergence stability and speeds up the
calculation by easing CFL number disparity due to spatial grid
size variations and the different orders of magnitude of solar
wind parameters such as plasma density, the Alfvén velocity,
and IMFs from the Sun to Earth. In order to fix the magnetic
field divergence error caused by the numerical scheme, the
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Figure 17. Polar plot of computed solar wind speed in the meridional plane
(φ = 180◦–0◦) at 215 RS (1 AU).

F-cycle iteration can maintain the ∇ · B error to an acceptable
level of 10−6, and it has a proper time-cost/performance of about
40% CPU time in time step. The combination of CNIS and a
multigrid Poisson solver is particularly efficient in enhancing
solution resolution near the HCS. For the acceleration of solar
wind, volumetric heating source terms are considered by using
a 3D distribution profile based on the expansion factor fS and
the angular distance θb. Although our definition of fS is slightly
different from the original (Wang & Sheeley 1990; Arge & Pizzo
2000; Arge et al. 2004), its role has the same functions as claimed
by Nakamizo et al. (2009); that is, this heating is weakened at
the location where the magnetic field is in overradial expansion
(fS > 1.0), and also it is strengthened at the location where the
magnetic field is in underradial expansion (fS < 1.0).

The use of angular distance θb, which can realistically specify
solar wind speed at the boundaries and the interiors of coronal
holes, can effectively distinguish the high-speed solar wind from
the low-speed solar wind (high-speed wind emanating from the
center of a coronal hole has large θb and low-speed wind from the
hole boundary has a small θb). Our heating profile configuration
can better lead to a non-uniform heating distribution reflecting
the topology of the magnetic field in a key region of the solar
wind generation. Meanwhile, our numerical results show that
the Wang–Sheeley relationship yields higher predicted wind
speed values at the source surface than the MHD model does.
Also, the MHD model predicts speeds closer to the observation
than those predicted by the Wang–Sheeley relationship.

Overall, our model can produce all the physical parameters
everywhere within the computation domain. This may imply that
the solar surface global heliospheric structure connection can be
predicted by the simulation up to a generally acceptable level,
although many unsatisfactory points remain as discussed here.

http://www.swpc.noaa.gov/ws/
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Figure 18. Comparisons of the MHD results (dashed red line), the predicted speed from the Wang–Sheeley model (dashed green line), and the observational data
(solid black line) obtained by the WIND satellite: (a) bulk flow speed V (km s−1), (b) number density N (cm−3), (c) temperature T (105 K), and (d) total magnetic field
magnitude B (nT). Here, data from WIND start on 1996 June 30.

Differences occur due to many factors such as the uncer-
tainties in photospheric magnetic measurements (especially in
polar regions), the imperfection of the potential magnetic field
approximation, the occurrence of some coronal mass ejections
(CMEs) during CR 1911 (1996 June 28–July 25),6 the shortage
of more sound physical-based and observation-supported heat-
ing mechanism, and the neglect of interaction between solar
wind and interplanetary discontinuities. Although our heating
consideration gives favorable numerical results, we have reasons
to believe that volumetric heating alone cannot be the only accel-
eration process acting on the solar wind and that other presently
unknown sources are needed to act within the region between
the lower corona and the source surface. Further characterizing
and quantifying of the key physical processes/mechanism will
clarify an operational route to more physically integrate realistic
coronal heating modules into 3D MHD codes.

Incidentally, our model validations for some other CRs show
that the numerical results for the CRs during solar minimum are

6 http://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/1996_07/univ1996_
07.html

usually better than those for the CRs during solar maximum,
when compared with observations in the solar corona and at
1 AU. This may be due to the fact that the currently used
initial input of a magnetic field based on the potential field
model cannot take into account the observed heliospheric open
flux from active regions and CMEs by way of interchange
reconnection frequently occurring at solar maximum (Cohen
et al. 2007).

More available spacecraft observations will of course equip
us with new findings about the coronal heating mechanism,
the causes and mechanisms of CMEs’ initiation, CMEs’ 3D
structure, and the interplanetary evolution process. The recently
launched Solar Dynamic Observatory (SDO) will help us
understand the Sun’s magnetic changes. SDO will determine
how the magnetic field is generated and structured, and how
the stored magnetic energy is released into the heliosphere and
geospace. STEREO observations can provide new insights into
the 3D structure of CMEs and their evolution in the heliosphere
which can directly be compared with existing models and
simulations. Comprehensive data and analysis with multiple

http://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/1996_07/univ1996_07.html
http://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/1996_07/univ1996_07.html
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spacecraft (such as SDO, STEREO, SOHO, ACE, WIND, or
other future missions) will probably help us develop the ability
of including physically realistic coronal heating modules into
3D MHD codes, improve the determination of the structure of
the ambient solar wind, and further numerically characterize
the 3D propagation of CMEs through the heliosphere. Other
aspects for space weather event simulations in 3D MHD from
the Sun to Earth can follow suggestions made by Dryer (1998,
2007) and Wu et al. (2006). These will be our avenue to future
improvements. In particular, this model is being used for the
propagation study of transient events from the Sun to Earth.
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