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The evolutionary process of magnetic reconnection under solar coronal conditions is investigated with our recently
developed 2.5D adaptive mesh refinement (AMR) resistive magneto hydrodynamics (MHD) model. We reveal
the successive fragmentation and merging of plasmoids in a long-thin current sheet with Lundquist number
𝑅𝑚 = 5.0×104. It is found that several big magnetic islands are formed eventually, with many slow-mode shocks
bounding around the outflow regions. The multi-scale hierarchical-like structures of the magnetic reconnection
are well resolved by the model and the AMR technique of the model can capture many fine pictures (e.g., the
near-singular diffusion regions) of the development and simultaneously it can save a great deal of computing
resources.

PACS: 96.60.P−, 96.60.Iv DOI:10.1088/0256-307X/28/8/089601

Magnetic reconnection is a fundamental plasma
process in which magnetic field topology is rearranged
and magnetic energy is converted into the kinetic and
thermal energy of plasma.[1,2] It is widely accepted
that magnetic reconnection plays an important role
in solar flares for fast energy release and associated
particle acceleration.[3−5] In the solar corona and the
magnetotail, magnetic reconnection always occurs at
current sheet, which is expected to form under vari-
ous conditions.[6−8] Liu et al.[9] have recently identi-
fied a current sheet associated with many reconnection
signatures, from which it is theoretically predicted
that the magnetic reconnection at the current sheet
is dynamic and unstable during the flare time.[10,11] A
2.5D magneto hydrodynamics (MHD) simulation car-
ried out by Jin et al.[12] illustrated that the formation
of plasmoids could occur intermittently and repeat-
edly in the course of a substorm.

In order to study the magnetic reconnection under
solar coronal conditions, we solve the 2.5D resistive
MHD equations that have been described in detail by
Feng et al.[13] However, magnetic reconnection in solar
flares evolves on many scales (from 10Mm to 10m).
The diffusion regions, where the actual breaking of
magnetic field lines takes place, just occupy a small
fraction of the whole computational area.[14] Thus it
is difficult to study the global evolution of magnetic
reconnection while at the same time to resolve the
small diffusion regions when using uniform compu-
tational grids. Therefore, the adaptive mesh refine-
ment (AMR) technique[15] is employed to deal with

the multi-scale reconnection problem. The main fea-
tures of the numerical algorithm and implementation
of the AMR technique are briefly described as follows.

We use a splitting based finite volume scheme
which splits the resistive MHD equations into a fluid
part and a magnetic induction part.[16] The fluid
part is solved with the second order Godunov-type
central scheme[17,18] and the magnetic part is han-
dled with constrained transport (CT) approach.[19]

The second order total variation diminishing (TVD)
Runge–Kutta scheme is applied for time integration.
The AMR technique is achieved by utilizing an AMR
package PARAMESH,[20] which provides the under-
lying grid and data management as well as parallel
communication infrastructures. We also implement
the divergence-free restriction and prolongation op-
erators to accomplish the AMR simulation.[21] The
present model has been used to study the Magnetic
Cloud (MC) driven reconnection under real solar wind
conditions.[22]

In this Letter, we employ the model to investigate
the developing process of magnetic reconnection under
solar coronal conditions,[11] not for a particular event.

The initial condition for the simulation is given by
the Harris equilibrium, 𝐵𝑥 = 𝐵0tanh(y/𝜆) with 𝜆 =
0.5𝐿0, where the magnetic field strength 𝐵0 = 0.004 T
and the current sheet width 𝐿0 = 600 km. The guide
field is given as 𝐵𝑧 = 0.2𝐵0 and the temperature is
2.0 × 106 K. To balance the total pressure, the den-
sity is chosen to be 𝜌 = 𝜌0sech2(y/𝜆) + 0.2𝜌0 with
𝜌0 = 2.1 × 10−11 kg/m3. The resistivity η (≡ 𝑅𝑚

−1)
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is uniform and constant, and 𝑅𝑚 = 5.0 × 104. The
velocities are set to be zero. The characteristic Alfvén
speed, time and current density are 𝑉0 = B0/

√
𝜇𝜌0 =

814 km/s, 𝑇0 = 𝐿0/𝑉0 = 0.74𝑠 and 𝐽0 = 𝐵0/(𝜇𝐿0) =
5.3 × 10−3 A, respectively. The simulation box size is
(−38.4, 38.4)𝐿0 × (−5.12, 5.12)𝐿0 under open bound-
ary conditions imposed on both 𝑥 and 𝑦 directions.
To trigger the reconnection, a small perturbations is
seeded at (0,0)𝐿0 with the same type as given by Birn
et al.[23]

The numerical results are given in the following.
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Fig. 1. (a) The profile of maximum 𝐸𝑧 with time (solid
line), in which the green point represents the onset of sec-
ondary islands; the dashed line denotes the predicted re-
connection rate 𝐸𝑠𝑝 of classical SP model. (b) The vari-
ations of 𝑗𝑧 (normalized by 𝐽0) along 𝑥 direction through
the current sheet center (horizontal cut of 𝑦 = 0) at dif-
ferent times.

Figure 1(a) is the temporal evolution of the max-
imum electric field of 𝐸𝑧 = η𝑗𝑧, where 𝑗𝑧 denotes the
out-of-plane component of the current density. 𝐸𝑧 can
be considered as the magnetic reconnection rate, al-
though many 𝑋 points appear after 𝑡 = 50𝑇0. The
predicted reconnection rate of the classical Sweet–
Parker (SP) model is 𝐸𝑠𝑝 = 1/

√
𝑅𝑚 = 0.00447, which

is plotted as the dashed line in Fig. 1(a).
Figure 1(a) exhibits that 𝐸𝑧 rises quickly at 𝑡 =

50𝑇0 (marked by the green point), the jump of
which indicates the onset of secondary islands be-
cause of tearing instability.[24−26] 𝐸𝑧 exceeds 𝐸𝑠𝑝

when secondary islands appear evidently, which can
dramatically influence the reconnection rate of the
system.[27−29] Figure 1(b) displays the variations of 𝑗𝑧
along 𝑥 direction through the current sheet center for
different times marked by blue, red and green points
in Fig. 1(a). The profile of 𝑗𝑧 at 𝑡 = 20, 40𝑇0 shows
that 𝑗𝑧 has a Gaussian-like distribution along the cur-
rent sheet and it increases with time. At 𝑡 = 50𝑇0,
𝑗𝑧 has evident fluctuations, which flags the starting of
the fragmentation of the current sheet.[29]

Figure 2 is the contour plots of 𝑗𝑧 at 𝑡 =
40, 53, 57, 60, 65, 70𝑇0, which reveals the evolution of
magnetic islands in the reconnection process.

The magnetic reconnection triggered by the ini-
tial disturbance leads to the formation of a Sweet–
Parker layer (Fig. 2(a)). In this process, the current
sheet becomes thinner and longer, and 𝑗𝑧 is enhanced.
Then at about 𝑡 = 50𝑇0, the secondary islands start
to take place along the current sheet. They first ap-
pear evidently close to the center of the current sheet
(Fig. 2(b)) and later at further away places (Fig. 2(c)).
These islands become larger in size with time, mov-
ing with the reconnection outflow to the left and right
sides (Fig. 2(d)). Some of the moving islands can in-
teract and merge with each other to become larger
ones (Figs. 2(e) and (f)).

After 𝑡 = 60𝑇0, the reconnection process is im-
pulsive and bursty. The continual formation and co-
alescence of the magnetic islands lead to the inter-
mittent characters of 𝐸𝑧 as demonstrated in Fig. 1(a).
As the reconnection evolves, the 𝑋 points between
the previously formed magnetic islands can collapse
into secondary current sheets,[30] which go unstable
again due to tearing instability (Fig. 2(e)). As a re-
sult, smaller magnetic islands are formed, which catch
up with the islands generated before and coalesce with
them. Eventually, a multi-scale hierarchical-like struc-
ture is produced (Fig. 2(f)), which is similar to the
concept of fractal reconnection.[31]

Figure 2(g) displays the enlarged view of a se-
lected box in Fig. 2(f). Locally, the reconnection can
be described as a Petschek-like model, with a pair of
slow-mode shocks bounding around the outflow region
where 𝑗𝑧 is notably enhanced (Fig. 2(g)). The profile
of the cut through 𝑦 direction at 𝑥 = 10.8𝐿0 shows
clearly that a pair of slow-mode shocks (S1 and S2)
is formed (Fig. 2(h)), which are characterized by the
increase in plasma density 𝜌 and velocity |𝑉 | and the
decrease in magnetic field strength |𝐵| (along +𝑦 and
−𝑦 directions for S1 and S2, respectively).

The slow-mode shocks can accelerate the plasma
to super-Alfvénic flows. As shown in Figs. 2(e),
2(f) and 2(g), the piston effect of these super-Alfvénic
flows makes the formation of turbulent-like compres-
sion structures on the two sides of the large magnetic
islands. Through the slow shocks, magnetic energy
can be effectively converted into the kinetic and ther-
mal energy of plasma by motor effect as measured by
𝐶motor = 𝑉 · (𝐽 × 𝐵).[3] Figure 2(h) exhibits that
𝐶motor increases rapidly around the slow-mode shocks,
which means that the magnetic energy conversion is
fast. The process of this energy conversion may be
responsible for explosive release of magnetic energy in
solar flare phenomena.[3,32]

From the above results, we can see that the multi-
scale structures are well resolved by our model. This is
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owing to the fact that in the developing process of the
magnetic reconnection, our model adjusts the compu-
tational grids automatically and dynamically to cap-
ture the refined pictures. In order to validate this, we
present the 𝑗𝑧 contour plot overlaid with AMR blocks
at 𝑡 = 65𝑇0 (Fig. 3(a)) and its enlarged views of some
selected regions (Figs. 3(b), 3(c), 3(d) and 3(e)).
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Fig. 2. (a)–(f) The 𝑗𝑧 contour plots, which reveal the de-
velopment of magnetic islands. Here 𝑗𝑧 is normalized by
𝐽0. It should be noted that for better visualization, the
𝑥/𝑦 axis ratio is set to 0.5 and only the central part of
the numerical region is shown. (g) Enlarged view of the
selected box in (f). (h) The profiles of 𝜌, |𝐵|, |𝑉 | and
𝐶𝑚𝑜𝑡𝑜𝑟 at cut of 𝑥 = 10.8 𝐿0, in which the values are
normalized by 𝜌0, 𝐵0, 𝑉0 and 𝑉0𝐽0𝐵0, respectively, and
the vertical long dashed lines bracket a pair of slow shocks
(S1 and S2).

In Fig. 3(a) there are 16000 blocks with refinement
levels of 2–8 and each one has 12× 6 grids. The AMR
blocks are adapted with the magnetic islands and cur-
rent sheets, which are different in scales and shapes.
We are able to achieve a minimum grid spacing of
∆𝑥 = 2.08×10−3𝐿0 and ∆𝑦 = 8.33×10−4𝐿0 in 𝑥 and
𝑦 directions, respectively, with only about 1.14 × 106

grid points. However, it needs about 4.53 × 108 grid
points to obtain the same grid resolution when we use
uniform computational grids.

It can be seen from Figs. 3(a), 3(b) and 3(d) that
the width of the generated magnetic islands spans
from about 1.0𝐿0 to 0.06𝐿0. The generation of is-
lands can make the current sheet become thinner, as
noted previously by Shibata et al.[31] and Loureiro et
al.[30] If the thinner current sheet is not resolved by
enough grids, excessive numerical dissipation can be

introduced, which could degrade the results. Thanks
to the AMR ability of the model, new computational
blocks are automatically added to the dynamically
evolved current sheets to make sure that the current
sheets are always well resolved. Figure 3(e) is a cut
of 𝑗𝑧 in 𝑦 direction at 𝑥 = 2.8𝐿0 where the thinnest
current sheet locates. There are 12 grid points across
the current sheet, confirming that the grid resolution
is sufficient for the diffusion region.
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netic lines. (b) The contour plot of reconnection electric
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Zooming into the interaction region of two large
merging magnetic islands (Fig. 3(c)), we observe that

089601-3

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN. PHYS. LETT. Vol. 28,No. 8 (2011) 089601

a anti-direction current sheet (perpendicular to the
original horizontal current sheet) is formed between
the two islands, where tearing instability also takes
place. A very small island appears at (13.9,−0.05)𝐿0,
which is correctly caught by the AMR blocks. If
the grid resolution is insufficient, this fine structure
will be dissipated.[14] Oka et al.[33] found that the
anti-direction reconnection plays an important role in
accelerating electrons by using particle-in-cell (PIC)
simulation.

With the dynamic evolution of the reconnection,
the reconnection electric field 𝐸 = −𝑉 ×𝐵+𝜂𝐽 is also
developed drastically. For example, at 𝑡 = 60𝑇0 when
a chain of magnetic islands has been formed obviously
(Fig. 4(a)), |𝐸| can be as strong as a few hundreds of
V/m (Fig. 4(b)), which is theoretically able to accel-
erate electrons up to relativistic energy as long as the
acceleration status can be maintained.[4] As shown in
the shade areas in Figs. 4(c), 4(d), 4(e) and 4(f), each
magnetic island is associated with enhanced density
𝜌, W-like 𝐵𝑥, rotational (bi-polar) 𝐵𝑦 and increased
𝐵𝑧. Thus they are multiple flux ropes,[34] which could
trap the electron effectively for acceleration.[4,5] The
test particle method[5] under these time-varying elec-
tric and magnetic fields may be helpful to further un-
derstand the acceleration process of electrons.

In conclusion, on the basis of a 2.5D resistivity
MHD simulation, we have studied the dynamic and
burst processes of magnetic reconnection under so-
lar coronal conditions. The results show that the
initially formed, extended Sweet–Parker-like current
layer is broken up into several large magnetic islands
with smaller islands continually being produced and
merged with them. The outflow regions between
the islands are bounded with slow-mode shocks, by
which magnetic energy can be effectively converted
into plasma energies. This simulated reconnection sce-
nario can be seen as a possible process of fast mag-
netic energy release and effective particle accelera-
tion, which can occur in current sheets involved in
solar flares and in the interaction region between two
flux ropes.[9,29,26] Moreover, taking advantages of the
AMR technique, the model can automatically resolve
many fine structures, e.g., near-singular diffusion re-
gions and very small islands formed between two merg-
ing islands, and at the same time can significantly save
computational resources, which is especially favorable

for our further three-dimensional magnetic reconnec-
tion studies of solar flares.

The simulations were completed on our SIGMA
Cluster computing system.
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