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ABSTRACT

A hybrid three-dimensional (3D) MHD model for solar wind study is proposed in the present paper with combined
grid systems and solvers. The computational domain from the Sun to Earth space is decomposed into the near-Sun
and off-Sun domains, which are respectively constructed with a Yin–Yang overset grid system and a Cartesian
adaptive mesh refinement (AMR) grid system and coupled with a domain connection interface in the overlapping
region between the near-Sun and off-Sun domains. The space-time conservation element and solution element
method is used in the near-Sun domain, while the Harten–Lax–Leer method is employed in the off-Sun domain.
The Yin–Yang overset grid can avoid well-known singularity and polar grid convergence problems and its body-
fitting property helps achieve high-quality resolution near the solar surface. The block structured AMR Cartesian
grid can automatically capture far-field plasma flow features, such as heliospheric current sheets and shock waves,
and at the same time, it can save significant computational resources compared to the uniformly structured Cartesian
grid. A numerical study of the solar wind structure for Carrington rotation 2069 shows that the newly developed
hybrid MHD solar wind model successfully produces many realistic features of the background solar wind, in both
the solar corona and interplanetary space, by comparisons with multiple solar and interplanetary observations.
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1. INTRODUCTION

To discover the solar wind structure from the Sun to Earth
and beyond is an important topic in the study of solar-terrestrial
physics. It has long been known that the solar wind is one
of the primary factors controlling the terrestrial environment
and its underlying structures can influence the propagation of
solar disturbance and interplanetary transient phenomena such
as coronal mass ejections (CMEs) and interplanetary CMEs
responsible for geospace storms. In this field also known as
space weather, three-dimensional (3D) numerical simulation
models are powerful tools and can complement observations.
To this end, scientists have developed various numerical models
as reviewed by Dryer (2007) and Feng et al. (2011), to
which researchers can refer for a comprehensive survey of key
scientific problems involved with and a future route to numerical
space weather study from the Sun to Earth.

In numerical studies of the solar wind, it is natural to use
the spherical shell domain to characterize the computational
domain from the inner boundary at the solar surface (1 RS) to
the outer boundary at 1 AU or beyond (Feng et al. 2010). The
solar wind and CMEs emanate from the Sun; thus, properly
characterizing the solar surface is critically important. The
Sun’s spherical surface, however, is not consistent with any
of the Cartesian or cylinder coordinate grids. The curved
inner boundary of the Sun presents a problem when using a
generic magnetohydrodynamics (MHD) solver on a Cartesian
grid and it is not easy to modify the solver at the boundary
while preserving the accuracy of the numerical scheme. The
coordinate singularity and the grid convergence near the poles
are classic numerical difficulties when one uses spherical
coordinates to represent the Sun’s spherical shell geometry
(Feng et al. 2010).

In order to fit the spherical surface or curved boundary in
numerical simulations, several techniques have been suggested
by numerical modelers. To list a few, the cut-cell method can
be used, but the presence of degenerate cells or very small
cells may become a major difficulty in the application of
the cut-cell method (Ingram et al. 2003; Colella et al. 2006;
Kleimann et al. 2009). The polyhedron-splitting method can
also well generate spherical surface fitting grids (Feng et al.
2007; Nakamizo et al. 2009). An overlapping structured grid,
such as the Yin–Yang overset grid in geoscience simulations
(Kageyama & Sato 2004; Yoshida & Kageyama 2004) and
the six-component grid system in solar wind MHD modeling
(Feng et al. 2010), has been used in the computation of
spherical shell geometry. A more general overset or Chimera
grid, being one of the most important grid techniques for treating
problems with complex geometry, has been proposed (Steger &
Benek 1987; Chesshire & Henshaw 1990; Brislawn et al. 1995;
Meakin 2000; Henshaw 2009), and has achieved successful
application in computational aerodynamics incorporating the
complex geometry of an aircraft’s body.

The adaptive mesh refinement (AMR) technique, originally
proposed by Berger & Oliger (1984) for numerical computation
of hyperbolic partial differential equations (PDEs), has seen
great success in computational fluid dynamics. An AMR grid
can adjust automatically and dynamically according to the
physical profiles, providing the required spatial resolution while
minimizing memory and storage requirements and CPU time.
The use of AMR is extremely beneficial and necessary for
problems with disparate spatial and temporal scales. The AMR
technique has played an increasingly important role in many
aspects of MHD computation problems in plasma physics and
astrophysics (MacNeice et al. 2000; Ziegler 2005; Olson 2006;
Tóth et al. 2006). The AMR technique is also one efficient way
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to satisfy the requirement of solar wind MHD simulations which
must cover a large enough computational domain (i.e., from the
solar surface to 1 AU and beyond) and simultaneously achieve
high resolution of interested scale structures, such as current
sheets and shock waves. The 3D MHD code BATS-R-US, which
takes advantage of the AMR technique, has successfully been
used in space environment modeling (e.g., Manchester et al.
2006; Tóth et al. 2006).

Parallel AMR applications are sufficiently complex and costly
to develop because they require more complex numerical algo-
rithms and programming than uniform fixed mesh approaches
(Hornung et al. 2006), and thus AMR software libraries are
expected to mitigate these burdens significantly by providing
general AMR functionality. Fortunately, several libraries have
been built to provide the underlying grid and data manage-
ment and parallel communication infrastructure for AMR ap-
plications. A list of AMR libraries and application codes that
are available for download can be found in Norman (2005).
For example, some well-known AMR libraries are provided
freely, such as PARAMESH (MacNeice et al. 2000) from NASA
Goddard Space Flight Center, Chombo (Colella et al.
2007) from the Lawrence Berkeley National Laboratory, and
SAMRAI (Gunney et al. 2006) and OVERTURE (Henshaw &
Schwendeman 2008) from the Lawrence Livermore National
Laboratory. The increased adoption of AMR techniques is partly
driven by the public availability of AMR codes and frameworks
(MacNeice et al. 2000; Norman 2005; Olson 2006).

The use of AMR grids in combination with overset grids
has been presented for the study of rotorcraft flow fields (e.g.,
Meakin 2000; Wissink et al. 2010) by dividing the computa-
tional domain into near-body and off-body fields constructed
with body-fitted overset grids and AMR Cartesian grids. The
body-fitted overset grids can achieve high-quality boundary con-
ditions and are embedded into off-body AMR Cartesian grids
that can automatically capture solution features and adapt the
grids. Henshaw & Schwendeman (2008) and Henshaw (2009)
have developed an approach for solving time-dependent PDEs
using overlapping grids and AMR in the OVERTURE frame-
work. Helios, a recently developed computational platform tar-
geting rotorcraft aeromechanics simulations, is also based on
the principle of hybrid grids, using unstructured body-fitted
grids near the body surface and AMR grids away from the sur-
face (Sitaraman et al. 2010; Wissink et al. 2010; Strawn 2010;
Sankaran et al. 2011).

Motivated by the above considerations, we decompose the
spherical shell domain from the Sun to Earth or beyond into
near-Sun and off-Sun domains. The Yin–Yang overset grid
(Kageyama & Sato 2004; Yoshida & Kageyama 2004) and AMR
grid are employed, respectively, in the near-Sun domain and off-
Sun domain. The near-Sun Yin–Yang grid can avoid the polar
singularity and polar region grid convergence problems and its
body-fitting property wins high-quality resolution near the solar
surface. The Yin–Yang grid extends only a short distance away
from the Sun and the majority of the computational domain is
covered with a Cartesian AMR grid that can automatically cap-
ture the main features of MHD flows and simultaneously save
significant computational resources in comparison with the use
of the uniform structured Cartesian grid. The implementation of
the AMR computation and parallelization of the off-Sun domain
is realized with the help of the AMR package PARAMESH that
provides the underlying grid and data management and parallel
communication infrastructures (MacNeice et al. 2000; Olson
2006).

The near-Sun part is solved with the space-time conservation
element and solution element (CESE) method and the off-Sun
part is solved by using a second-order Godunov-type finite-
volume scheme with a Harten–Lax–Leer (HLL) approximate
Riemann solver for numerical flux. Hereafter, we refer to them
as the Yin–Yang–CESE solver and AMR–HLL solver, which
are coupled through proper interpolation with timely update and
boundary exchange. A domain connectivity module is designed
in Section 3.3 to manage the data communications between the
near-Sun/off-Sun solvers in the Yin–Yang/AMR overlapping
grid systems.

To validate the hybrid 3D solar wind model of the CESE+HLL
method, we choose the observed photospheric magnetic field
for Carrington rotation (CR) 2069 as initial magnetic input to
simulate the ambient solar wind. The comparison of numer-
ical results with observations, such as Mauna Loa Solar Ob-
servatory Mark IV (MLSO/MK4) and Solar and Heliospheric
Observatory (SOHO), Ulysses, and OMNI data, gives a favor-
able agreement during this period.

The remainder of this paper is structured as follows. In
Section 2, a general description of the MHD solar wind model is
presented. Section 3 describes the hybrid grid systems, including
the Yin–Yang grid, the AMR grid, and the coupling of the two
grid systems. In Section 4, the MHD solvers for the two grid
systems are given. The simulation results are given in Section 5.
Finally, Section 6 is reserved for summary and discussion.

2. GOVERNING EQUATIONS

The solar wind evolution is governed by modified MHD
equations. By splitting the magnetic field (e.g., Tanaka 1994;
Gombosi et al. 2003; Nakamizo et al. 2009; Feng et al. 2010),
the MHD equations are written as follows:

∂ρ

∂t
+ ∇ · ρu = 0 (1)
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+ ∇ ·
[
ρuu + I

(
p +

1

2
B2

1 + B1 · B0

)
− B1B1

− B1B0 − B0B1

]
= j0 × B0 + ρ [g − � × (� × r)]

− 2ρ� × u − B(∇ · B) (2)
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− u(∇ · B) + η∇(∇ · B), (4)
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E = u × B, j0 = ∇ × B0
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2
ρu2 +

p

γ − 1
+

1

2
B2

1,

which corresponds to the modified total energy density consist-
ing of the kinetic energy density, thermal energy density, and
magnetic energy density written in terms of B1.
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Here, ρ is the mass density; u = (u, v,w) are the velocities
in the x-, y-, and z-directions; p is the thermal pressure; B, B0,
and B1 denote the total magnetic field, the potential magnetic
field, and its perturbed component such that B = B0 + B1; t and
r are time and the position vector originating at the center of the
Sun; g = −GM/r3 · r is the solar gravitational force; � is the
angular velocity of solar rotation; and γ is the ratio of specific
heats. For γ , we use 1.57. Qe stands for the energy-source term,
which is assumed to be responsible for heating and acceleration
of the solar wind.

The primitive variables ρ, v, p, B, r, t, g in these equa-
tions are normalized by the characteristic values ρS, aS, ρSa

2
S,√

ρSa
2
S, RS, RS/aS , and a2

S/RS , where ρS and aS are the density
and ion-acoustic wave speed at the solar surface. Solar rota-
tion is considered in the present study with angular velocity
|�| = 2π/26 radian day−1 (normalized by aS/RS in simula-
tions). A factor of 1/

√
μ has been absorbed into the definition

of B. Because B0 is constant in time and force free, many terms
near B0 in the right-hand side of the equations can vanish. It
should be noted that the equations return to the original non-
splitting form when B0 = 0.

In order to reflect the magnetic field topology in the heating
and acceleration of solar wind (Nakamizo et al. 2009; Feng et al.
2010), following Feng et al. (2010) the energy-source term Qe
is given as follows:

Qe = Q1 exp(−R/LQ1 ) + Q2(R − 1) exp(−R/LQ2 ),

where Q2 = Q0Ca and Ca = C ′
a/max(C′

a) with C ′
a =

(5.8−1.6e[1−(θb/8.5)3])3.5

(1+fS )2/7 . Q1 and Q0 in this paper are given as 0.8 ×
10−9 Jm−3 s−1 and 6.5×10−8 Jm−3 s−1, respectively. R = r/RS

is the heliocentric distance. LQ1 and LQ2 are set to be 1 and 0.8.
fS is the magnetic expansion factor which reads fS = ( 1

R
)2 BRs

BR

where BRs and BR are the magnetic field strength at the solar
surface and at the heliocentric distance R. θb is the minimum
angular separation between an open magnetic field footpoint and
its nearest coronal hole boundary. The factor C ′

a has been used
formerly (Arge et al. 2003; Owens et al. 2008) to empirically
study the solar wind.

In order to reduce the numerical error of ∇ · B, the eight-
wave scheme (Powell et al. 1999; Groth et al. 2000) and the
diffusion control approach of ∇ · B (Dedner et al. 2002; van
der Holst & Keppens 2007; Mignone & Tzeferacos 2010) are
employed by adding the source terms −∇ · B(0, B, u · B, u) and
η∇(∇ · B), where η is an artificial diffusion parameter chosen
to maximize the diffusion without introducing a numerical in-
stability. In our computation, we use η = Cd ( 1

Δx2 + 1
Δy2 + 1

Δz2 )−1,
where Δx, Δy, and Δz are grid spacings in Cartesian coordi-
nates and should be replaced by Δr , rΔθ , and r sin(θ )Δφ in
spherical coordinates. Here, 0 � Cd � 2 and we set Cd = 1.3.
We use heliographic coordinates corotating with the Sun as
our reference frame and the solar wind evolution is calcu-
lated in Cartesian coordinates associated with the heliographic
coordinates.

3. HYBRID GRID SYSTEM

This section describes the Yin–Yang grid for the near-Sun
part and the AMR grid for the off-Sun part of the whole
computational domain from the Sun to Earth or beyond.

X

Z

Y

Yin

Yin-Yang

Yang

Figure 1. Yin–Yang overset grid.

3.1. Yin–Yang Grid

The Yin–Yang grid (Kageyama & Sato 2004; Yoshida &
Kageyama 2004) is composed of two identical component grids
combined in a complementary way to cover a spherical surface
with partial overlap on their boundaries as shown in Figure 1.
Each component grid is a low-latitude spherical mesh, which is
defined in the spherical coordinates by(

π

4
− δ � θ � 3π

4
+ δ

)
∩

(
π

4
− δ � φ � 7π

4
+ δ

)
,

where δ is proportionally dependent on the grid spacing en-
tailed for the minimum overlapping area. The two component
grids have the same shape and size and are called “Yin” and
“Yang,” respectively, after the symbol for the yin and yang of the
Chinese philosophy of complementarity, according to Kageyama
& Sato (2004) and Yoshida & Kageyama (2004). They are
the low-latitude part of the latitude–longitude grid with quasi-
uniform grid spacing and polar grid convergence and are
singularity-free. The transformation of coordinates and vector
components between the Yin and Yang components is straight-
forward and symmetric, thus allowing for an easy and direct im-
plementation of the grid into a 3D code already employing spher-
ical polar coordinates. The Yin–Yang grid has been successfully
employed in the field of geophysical science for simulations of
mantle convection and the geodynamo (Kageyama & Sato 2004;
Yoshida & Kageyama 2004; Kameyama et al. 2008; Kageyama
et al. 2008), atmospheric general-circulation models (Peng et al.
2006), and 3D self-gravitating flows (Wongwathanarat et al.
2010). Here, for the first time, we explore the application of the
Yin–Yang grid to the numerical study of solar wind MHD sim-
ulations. For our purposes, we define the Yin grid in Figure 1 as
being consistent with our physical coordinates. The relation be-
tween the Yin coordinates and the Yang coordinates in the Carte-
sian coordinate system is (xe, ye, ze) = (−xn, zn, yn), where
(xe, ye, ze) are the Yin Cartesian coordinates and (xn, yn, zn)
are the Yang coordinates. It should be noted that the transfor-
mations between the Yin and Yang coordinates are symmetric.
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We define mesh points on the Yin and Yang grids as

θj = θmin + jΔθ, j = 0, 1, . . . , Nθ + 1

φk = φmin + kΔφ, k = 0, 1, . . . , Nφ + 1

and

Δθ = (θmax − θmin)/(Nθ − 1)

Δφ = (φmax − φmin)/(Nφ − 1),

where Nθ and Nφ are the mesh numbers of the latitude and longi-
tude, respectively. θmin = π

4 , θmax = 3π
4 , φmin = π

4 , φmax = 7π
4 .

It is straightforward to construct the 3D Yin–Yang grid for
spherical shell geometry by piling up the basic two-dimensional
Yin–Yang grids in radial direction, as shown in Figure 1. In this
paper, we use Nθ = 61 and Nφ = 181. In the radial direction,
we set r(1) = 1 RS, r(i+1) = r(i) + Δr(i), where i = 1, . . . , Nr

(Nr = 66 in the present paper). Here, Δr(i) = 0.01RS if
r(i) < 1.1 RS ; Δr(i) = min(A× lg(r(i−1)), Δθ ×r(i−1)) with
A = 0.01/ lg(1.09) if r(i) < 3.5 RS ; and Δr(i) = Δθ × r(i − 1)
if 3.5RS � r(i) � 7.0RS . We set δ = Δθ such that the
overlapping region between the Yin–Yang component grids
spans 2Δθ .

For the horizontal (θ, φ) boundary or internal border between
the Yin and Yang components, according to the general overset
technique (Chesshire & Henshaw 1990; Tang et al. 2003), bi-
cubic spline interpolations are applied on the boundary of the
Yin and Yang grids to set the horizontal boundary values, as
similarly done for the six-component grid by Feng et al. (2010).
No boundary conditions in the sphere or angular directions are
needed in the Yin–Yang grid. Each grid component communi-
cates with its neighboring component using information from
ghost zones derived by interpolation of data between internal
grid zones of the neighboring grid component. Interpolation is
only required in the two angular coordinates as the radial part of
the Yin–Yang grid is identical to that of a spherical polar grid.
Then, the interpolated values must be transformed from Yin to
Yang grid coordinates and vice versa. It should be noted that
the mapping of vector quantities between the Yin grid and Yang
grid components is

U(e) =
(

0 0 1
0 1 0

−1 0 0

)
U(n),

where U(e) and U(n) denote velocity and magnetic field vectors
in Yin and Yang coordinates, respectively.

The outer boundary of the Yin–Yang grid is updated by
receiving interpolation data from the off-Sun Cartesian AMR
grids and is handled by the domain connectivity module given
in Section 3.3.

3.2. The AMR Grid

The off-Sun Cartesian AMR grid is based on the parallel AMR
software PARAMESH (MacNeice et al. 2000; Olson 2006),
which manages the grid generation, the inter-processor com-
munication, the refinement and de-refinement mechanism, as
well as the load balance. A detailed description of PARAMESH
can be found on the Web site http://www.physics.drexel.edu/
∼olson/paramesh-doc/Users_manual/amr_users_guide.html.

In the AMR part, the computational domain is covered
with a hierarchy of blocks distributed among the processors.
Each of the blocks is self-similar (i.e., the same numbers of
mesh points are in each dimension, the aspect ratios are the
same, etc.). Each block is surrounded by two layers of guard
cells which are filled either by exchanging data from sibling
meshes at the same level or by interpolation from coarse to
fine meshes. After guard-filling, each block can be seen as an
independent computational element in which an MHD solver
can be implemented. Flux conservation at interfaces of different
refinement levels is imposed by replacing the flux computed
at the coarser level of refinement with the appropriate sum of
fluxes at the finer level.

The refinement and de-refinement of a block are controlled
by error estimates, the choice of which is an important topic in
AMR. There are many kinds of adaptation criteria (Dezeeuw
& Powell 1993; Powell et al. 1999; Groth et al. 2000). In this
work, we choose a set of criteria based on MHD quantities that
can efficiently detect distinctive features of MHD simulations
(Linde 1998; Jiang et al. 2010). The refinement criteria are
defined as a combination of curl and divergence of velocity
and curl of magnetic field, which can respectively capture and
resolve shock waves, shear layers, and electric current surfaces:

χ1 =
√

V
|∇ · v|
|v| + εa

χ2 =
√

V
|∇ × v|
|v| + εa

χ3 =
√

V
|∇ × B|

|B| + ε
√

p
,

(5)
where a is the plasma sound speed and p is the thermal pressure.
The factor ε � 1 is introduced into Equation (5) to keep them
well functioned when either |v| or |B| is equal to zero. The factor√

V is the length of the cell to the power of 3/2.
If any of the maxima of these criteria in one block is greater

than the threshold for refinement, this block is flagged to be
refined, while if all of the maxima of these criteria in one block
are less than the threshold for coarsening, this block is flagged
to be coarsened. The standard deviations near zero for χi (i=1,2,3)
are computed as

σi =
√∑N

j=1 χ2
i

N
, (6)

with j visiting all the cells in the computation domain. Then the
thresholds for criteria of refinement and definement are given
by multiplying each σi with properly chosen factors.

3.3. The Domain Connectivity Module

The Yin–Yang grid and the AMR grid are coupled by a
parallel domain connectivity module, which is achieved by using
message passage interface (MPI). As in the study of rotorcraft
flow fields (Sitaraman et al. 2010; Wissink et al. 2010; Sankaran
et al. 2011), a domain connectivity module is designed to transfer
solution information between the near- and off-Sun solvers. The
main tasks of the domain connectivity module include grid hole
cutting to remove points unused in the AMR grid, searching
the inter-grid boundary points (IGBPs) that need to exchange
boundary information through interpolations, and performing
the actual interpolation and inter-processor exchange of solution
data between the Yin–Yang–CESE solver and the AMR–HLL
solver.

Our whole computational domain is a cube region with a size
of [−250 RS, 250 RS]3, centering around the Sun. Initially, the
AMR grid is composed of 95,000 blocks with 5–9 levels and
each of the blocks has 6 × 6 × 6 meshes. The blocks become
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Figure 2. (a) Hole cutting of the AMR grid and 3D representation of the Yin–Yang/AMR overlapping grid systems; (b and c) the donor–receptor cells method.

small when they are close to the Sun surface. The Yin–Yang
grid is embedded in the background AMR Cartesian grid and
extends from 1.0 RS to 7.0 RS in the radial direction.

The coupling of the Yin–Yang/AMR grids is shown in
Figure 2(a). The two grid systems overlap within a spherical
shell from 6.0 RS to 7.0 RS , where data are exchanged. In order
to maintain a smooth transition of the solution variables from the
near-Sun to off-Sun parts, the grids in the overlapping regions
should have comparable grid resolutions. Therefore, the AMR
blocks in the overlapping regions are refined until they reach the
grid resolutions of the outer boundary points of Yin–Yang grid
system.

At the beginning of the simulation, the domain connectivity
module does the searching and flagging of near-Sun/off-Sun
IGBPs. For the Yin–Yang grid system, the IGBPs are the outer
boundary points. For AMR grid system, the IGBPs are the
nearest two layers of points neighboring the interior of the sphere
surface at 6.0 RS .

The IGBPs are not used to advance the solution but to receive
solution values interpolated from their overlapping grids. We
use a dual-way coupling method between the Yin–Yang and
AMR grid systems; that is, we need to obtain the data of IGBPs
for both of them by interpolation from each other.

We apply the Lagrange interpolation to perform the data
interpolation in the Yin–Yang/AMR overlapping grids. As in
Chiu & Meakin (1995) and Cai et al. (2006), the concept of
donor and receptor points is used, as shown in Figures 2(b)

and (c). The Yin–Yang Grid (A) and the AMR Grid (B) overlap
with each other. A cell-centered receptor point, say on Grid A
(marked by the red star), needs to receive solution information
from Grid B to provide the boundary condition for Grid A. The
donor cell for this receptor point is identified as the cell on Grid
B that contains the receptor point. (We mark this donor cell with
the green bold point in Figure 2(c).)

The points (marked by black solid square symbols) surround-
ing the donor cell form the set of interpolation stencil points
for the receptor point. The solution variables at the receptor
points can then be easily obtained by using the Lagrange in-
terpolation over this set of stencil points. In the present paper,
we use 27 stencil points for interpolation in three dimensions,
so that the Lagrange interpolation has third-order accuracy. As
the numerical test will show, this kind of interpolation for the
boundary data determination in the Yin–Yang/AMR overlap-
ping grids does not degrade the numerical accuracy of the whole
model.

The domain connectivity module also needs to account for
the specific transformations of vector fields and coordinates
between the Yang and AMR grid systems. That is to say, if
grid A is the Yang grid, the coordinates of the receptor point
should be transformed to the Yin coordinates (i.e., the physical
coordinates) when searching its corresponding donor point on
Grid B. After the interpolation, transformations are also needed
for vectors of velocity and magnetic field to obtain the correct
values at the original point of grid A and vice versa.
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4. MHD SOLVERS AND TIME STEPPING

Our hybrid model consists of two different MHD solvers: the
CESE method on the Yin–Yang grid in the near-Sun region and
the HLL method on the AMR grid in the off-Sun region, in order
to solve the MHD solar wind governing Equations (1)–(4). The
details of these two numerical algorithms for the MHD equations
can be referred to Kurganov et al. (2001), Ziegler (2005), and
Feng et al. (2007, 2010). Here, in order to show how these two
solvers cooperatively work to advance the solution, only the
main features of the numerical solvers are described briefly.

4.1. MHD Solvers

The SIP-CESE MHD model (Feng et al. 2007, 2010) is
implemented on the Yin–Yang grid system. The numerical
improvements of the SIP-CESE MHD model, such as the
courant-number insensitive method, multiple time step method,
and fast multi-grid Poisson solver for cleaning magnetic field
divergence, have been provided in detail by Feng et al. (2010).

On the off-Sun AMR grid system, the finite-volume MHD
solver of second-order accuracy is applied, where the MHD
equations are solved with a cell-centered Godunov-type finite-
volume scheme (Kurganov et al. 2001; Ziegler 2005) for spa-
tial discretization, in conjunction with second-order Monotone
Upstream Schemes for Conservation Laws method for recon-
struction and with approximate Riemann solvers of HLL for
numerical fluxes (Harten et al. 1983). For time integration, the
explicit second-order Runge–Kutta time stepping is used.

It should be mentioned that the splitting of magnetic field
B into time-dependent part B1 and time-independent part
B0 is very important for solving the MHD equations in a
(near) conservation form, since the total energy density can
be completely dominated by the magnetic energy B2

0/2 near the
Sun, which can lead to negative pressure if calculated from the
total energy density. This problem can be mitigated, particularly
near the Sun, by splitting, and for small plasma β regions,
solving for the deviation B1 from the embedded field B0 is
inherently more accurate than solving for the full magnetic
field vector B. Thus, the splitting form of the MHD solar wind
governing Equations (1)–(4) is used in the CESE solver on the
near-Sun grid system while the original non-splitting form is
taken in the HLL solver on the off-Sun AMR grid system.

4.2. Time Stepping

The iterative time steps determined by the Courant-
Friedrichs-Lewy (CFL) stability conditions differ by about
10–20 times between the Yin–Yang and AMR grid systems. The
same time stepping strategy in the entire computational domain
decreases the numerical performance and wastes computational
resource. Thus, in the simulation we use multiple time stepping
methods (van der Ven et al. 1997; Maurits et al. 1998) for the
two grid systems. The use of a multiple time stepping algorithm
between the Yin–Yang and AMR grid systems can speed up the
computation.

The implementation of this multiple time stepping algorithm
on the hybrid grid systems is designed as follows. First, we
calculate the usual time step Δt1 and Δt2 for the Yin–Yang and
AMR grids, respectively, by using the CFL stability condition
with the Courant number 0.8. Then we further constrain the time
step as, Δt2 = M × Δt1,M = int(Δt2/Δt1), where “int(x)”
means the integer part of x playing the same role as that of the
FORTRAN intrinsic function. When the solution in the AMR
grid advances a single step of Δt2, the solution in the Yin–Yang

grid needs to advance M time steps of Δt1 in order to arrive
at the same time level with the AMR grid. Then after each
synchronization step, Δt1 and Δt2 are determined again. At
the same time level, the boundary values of the Yin–Yang and
AMR grids are obtained by interpolations from each other with
the help of the domain connectivity module as described in
Section 3.3. Otherwise, the values of the Yin–Yang grid’s outer
boundary are calculated by U1(t + i × Δt1) = U2(t) + i × Δt1 ×
U2t (t), where i = 1, . . . ,M − 1 and U2(t), U2t (t) stand for
the values of U and their time derivative at t on the AMR grid
system. Then these boundary values of U1 at M − 1 time step
levels are all packaged into buffers and are transferred to the
Yin–Yang grid system, which is also completed by the domain
connectivity module.

5. NUMERICAL RESULTS FOR THE STEADY
SOLAR WIND OF CR 2069

In order to validate the newly established hybrid solar wind
model, we present a numerical simulation for the steady solar
wind of CR 2069. In the simulation, the boundary conditions at
both the bottom and the outmost surfaces of the computational
domain are prescribed in the same way as done by Feng et al.
(2010), where the time-dependent inner boundary condition
with mass flux limitation by a Ulysses observation is employed
according to Hayashi (2005). The temperature and density are
set to be 1.3 × 106 K and 1.0 × 108 cm−3, respectively. The
initial state throughout the domain is determined by the analytic
spherical symmetric Parker solar wind solution and the potential
magnetic field model based on the synoptic map of the line-of-
sight photospheric magnetograms for CR 2069 from the Wilcox
Solar Observatory. Then the governing equations are advanced
by using the hybrid model above until a steady state is achieved.

Figure 3 compares the MHD solution and the observations
on the surfaces of both r = 1.15 Rs (a, b) and r = 2.5 Rs (c, d).
Figures 3(a) and (b) are the synoptic maps of the simulated
mass flux density and the full-disk observations of the Extreme
ultraviolet Image Telescope (EIT) aboard the spacecraft of
SOHO on the surface of r = 1.15 Rs . Figure 3(c) superimposes
the plasma density isolines on the contour map of the radial
velocity at r = 2.5 Rs and Figure 3(d) presents the synthesized
white-light polarized brightness (pB) image at the west limb
constructed from the successive images centered at r = 2.5 Rs

from the LASCO C2.
The most prominent features in Figure 3 are the large

equatorial extensions of the southern polar coronal hole (PCH)
and the isolated equatorial holes (IEHs), which are characterized
by the low-latitude presence of relatively low density, high mass
flux density, and low-latitude boundaries between the open and
closed magnetic field regions in Figure 3(a) and the dark areas of
the EIT observation in Figure 3(b). Both the numerical result and
the EIT observation at r = 1.15 Rs demonstrate that there are
isolated holes around (θ, φ) = (0◦, 280◦) and (−30◦, 200◦) and
that the southern extending PCH can reach θ = −30◦ around
φ = 150◦. Additionally, the isolated equatorial coronal holes
and the southern extending PCH can be further confirmed by
the distribution of the bright structures in the pB observation
from LASCO C2 and the numerical results at r = 2.5 Rs .

Another characteristic is the warp structure of the magnetic
neutral line (MNL) between φ = 200◦ and φ = 330◦ in
Figure 3(c), which is associated with the IEH and the equatorial
extension of the southern PCH. The southernmost point of the
MNL extends to θ = −30◦ and the northernmost point to
θ = 10◦. The bright structures in Figure 3(d) also suggest the
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Figure 3. Synoptic maps of the simulated mass flux density (a) in units of 1013 cm−2 s−1 and full-disk observations from SOHO/EIT (b) on the surface of r = 1.15 Rs .
The solid lines in (a) denote the boundaries between the open and closed magnetic field areas. The isolines (solid lines) of proton number density in units of cm−3

are superimposed on the contour map of the radial velocity in units of km s−1 (c) and the synthesized white-light polarized brightness (pB) image (d) observed by
LASCO/C2 images centered at r = 2.5 Rs .

relatively large poleward extensions of the streamer of the closed
magnetic field around the two locations. Generally speaking, the
MNL is often flat during solar minima (Hoeksema et al. 1983;
Gibson et al. 2009). However, Wang et al. (2009) found that it
was the weaker solar polar fields that led to a lot of peculiarities
during the 2008 solar minimum, which included large warps of
the heliospheric current sheets (HCSs).

Figures 4(a) and (b) exhibit the pB observations from 1.15 Rs

to 6 Rs on April 21 and May 13, where the observations from
1.15 Rs to 2.3 Rs are adopted from MLSO/MK4 white-light
observation and the outer fields of view from 2.3 Rs to 6 Rs are
from LASCO C2 observations. Figures 4(c) and (d) present the
synthesized pB images from the simulation on the meridional
planes at φ = 180◦–0◦ (c) and φ = 270◦–90◦ (d) from 1.15 Rs

to 6.0 Rs , in which we enhance the images inside and outside
2.3 Rs separately. Figures 4(e) and (f) are the magnetic field
topologies projected on the same meridional planes as in (c)
and (d). It should be noted that the results on the meridional
planes at φ = 180◦–0◦ and φ = 270◦–90◦ roughly correspond
to the observations on April 21 and May 13, respectively.

Figure 4 shows that the locations of the bright structures at
both limbs from the simulation results are in good agreement
with those observed by MLSO/MK4 and LASCO C2. Compar-
ing Figures 3 and 4, we can see that the brightest streaks at both
limbs in Figures 4(a) and (c) correspond to the helmet streamer,
the high-density regions in the neighborhood of the MNL and
the high inclined, radially oriented bright structures in the south-
east of Figures 4(b) and (d) are identified to be the emission from
the area of the tilted MNL discussed in Figure 3 and its underly-
ing streamer. In Figure 4(f), the high-density pseudostreamer
structure (Wang et al. 2009) produces the slightly bright

rays in the northeast of Figure 4(b) and their counterparts in
Figure 4(d).

Figure 5 presents the pseudocolor image of the radial solar
wind speed and magnetic field lines in the X–Z plane (a), where
the black squares represent the blocks of different refinement
levels and the white solid lines with arrowheads stand for the
magnetic field lines, and radial profiles of the radial velocity (b)
and proton number density (c) from 1 to 20 Rs at two locations
with different latitudes θ = 8◦ (solid line) and θ = 79◦ (dashed
line) in the X–Z plane. From this graph, we can see that low-
speed solar wind (>450 km s−1), whose latitudinal width is
about 25◦, is concentrated on the regions around the MNL and
the high-speed solar wind (>700 km s−1) flows mainly in the
high- and middle-latitudes (HMLs). In addition, the middle-
speed solar wind (450–700 km s−1) even appears at very low
latitudes in the left part of Figure 5(a), which corresponds
to the extending hole of southern PCH. Figures 5(b) and (c)
show that the radial bulk speed changes very slightly and the
number density approaches r−2 beyond 10 Rs and the profile for
low-speed solar wind basically agrees with those derived from
observations by Sheeley et al. (1997). The smooth variations
of the physical quantities justify our interface module in the
Yin–Yang and AMR overlapping domain.

Figure 6 displays the simulated distributions of radial velocity
in the meridional plane and in the equatorial plane from about 6
to 215 Rs . Figure 6(a) basically exhibits the bimodal structure
of the fast solar wind at coronal holes and the slow solar wind
around the low-latitude HCS. The abruptly southward deflection
of the low-speed solar wind in the left part of Figure 6(a) results
from the warping structure of the HCS. Due to solar rotation,
the X–Z plane beyond 150 Rs continuously intercepts the
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Coronal composite images on April 21 (a) and May 13 (b) and the
distribution of the simulated pB on the meridional planes at φ = 180◦–0◦ (c)
and φ = 270◦–90◦ (d) from 1.15 to 6 RS. The magnetic field topology projected
on the meridional planes at φ = 180◦–0◦ (e) and φ = 270◦–90◦ (f) from 1 to
6 Rs , where the innermost solid gray circle denotes the solar disk.

low-speed solar wind around HCS among longitudes from 230◦
to 280◦ at 2.5 Rs . Figure 6(b) also depicts the sector structure
in the equatorial plane and the middle-speed solar wind flows
from the IEH and the extending hole.

Figure 7 displays the comparisons of the MHD results with the
daily averaged data obtained by Ulysses between latitudes ±80◦

during its third fast latitudinal scan in 2007, with a heliocentric
distance of 1.5–2.5 AU. The Ulysses data are scaled to 1 AU by
assuming an r−2 falloff for Br and N, an r−2(γ−1) (γ = 1.46)
variation for T and no change for Vr, as in Usmanov et al.
(2000). It can be seen from Figure 7 that the latitudinal changing
trends of the solar wind parameters obtained from MHD results
are basically consistent with those from Ulysses observations.
The hybrid 3D MHD model reproduces fast, tenuous, and hot
solar wind at high latitudes and slow, dense, and cold solar
wind near the equator. The slopes of velocity and temperature
transitions are roughly consistent with Ulysses observations. For
the simulation, Vr is a little faster and N is a little lower near the
polar areas.

Figure 8 compares the simulated results for CR 2069 with
OMNI data that combine the measurements from multiple
spacecraft near point L1. Obviously, the hybrid MHD model
reproduces three observed middle-speed streams and their asso-
ciated corotating interaction regions, which are characteristic of
the enhancements of the plasma density N and temperature T in
front of the high-speed streams. The rate of density enhancement
and the slope of the rising solar wind speed in the simulation
are roughly consistent with those of the observations, although
the second simulated middle-speed stream rises late by about
0.5 day and the third one arrives early by about 1.5–2 days.
In addition, both Figures 7 and 8 show that the hybrid MHD
model captures the polarity of the magnetic field, although the
magnitude of the magnetic field is a little lower compared with
the observations.

6. SUMMARY AND CONCLUSION

In summary, a hybrid 3D MHD model for solar wind mod-
eling of the Sun to Earth system is proposed, where an inno-
vative dual-mesh grid system consisting of two grid systems
is designed with a near-Sun Yin–Yang grid to fit the spherical
surface boundary and overcome the well-known coordinate sin-
gularity as well as polar grid convergence problems, and with an
off-Sun block structured AMR Cartesian grid to automatically
capture the far-field plasma flow features. A domain connectiv-
ity module is provided to perform the interpolation and transfer
of the solution variables between the Yin–Yang/AMR overlap-
ping grid systems.

In the present version of this 3D code, the CESE method is
for the first time employed in the Yin–Yang grid of the near-Sun
region, while the HLL scheme is used in the AMR grid of the
off-Sun region. In this way, grid quality in both the near-Sun and
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Figure 8. Comparisons of solar wind radial velocity Vr (a), proton number density N (b), radial magnetic field Br (c), and temperature T (d) between the MHD results
and the 1 hr averaged data from OMNI near 1 AU. The observed data start from 2008 April 16.

off-Sun regions is no longer an issue and adaptive meshing in
the off-Sun region is straightforward to implement. At the same
time, Cartesian grids are fast and efficient because there are no
grid metric terms with structured data layout maximizing cache
performance. Also, since Cartesian grids facilitate direct use of
high-order numerical methods, we have many viable choices of
trying other modern numerical schemes (e.g., Pen et al. 2003;
Kleimann et al. 2004, 2009; Yee & Sjögreen 2006, 2007; Toro
2009; Balsara et al. 2009; Mignone & Tzeferacos 2010; Ziegler
2011) in the off-Sun region to develop other versions of this
kind of hybrid code for 3D solar wind models.

In the near-Sun region, where plasma β is much smaller, the
splitting of magnetic field B into time-dependent part B1 and
time-independent part B0 is helpful for positivity maintenance
of the thermal pressure. In the off-Sun region, we suggest that
the original non-splitting form of magnetic field B be used. This

treatment of the magnetic field can enhance solution accuracy
in both the near-Sun and off-Sun regions.

This newly established hybrid 3D MHD model is validated
to produce the background solar wind of CR 2069 and compare
the numerical results with the observations, such as MLSO/
MK4, SOHO LASCO/C2, SOHO/EIT, Ulysses, and OMNI
data. The comparisons show that the model captures a lot of
peculiarities in the corona in the 2008 solar minimum and
basically reproduces the large-scale solar wind structures in
interplanetary space. The simulation near the Sun shows the
observed large equatorial extensions of the southern PCH and
the presence of the IEHs is rarely seen in the previous minima.
In addition, the numerical results also yield the warp structure
of the MNL between φ = 200◦ and φ = 330◦ and its
associated low-speed solar wind distribution in interplanetary
space. Finally, the solar wind parameters from the hybrid 3D
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MHD model are roughly consistent with Ulysses observations
and with the temporal variations from OMNI data combining the
measurements by multiple spacecraft near point L1. Of course,
some differences between numerical results and observations
commonly exist as claimed by Feng et al. (2010).
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