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Abstract We present a fast solver for computing potential and linear force-free fields
(LFFF) above the full solar disk with a synoptic magnetic map as input. The global po-
tential field and the LFFF are dealt with in a unified way by solving a three-dimensional
Helmholtz equation in a spherical shell and a two-dimensional Poisson equation on the
solar surface. The solver is based on a combination of the spectral method and the finite-
difference scheme. In the longitudinal direction the equation is transformed into the Fourier
spectral space, and the resulting two-dimensional equations in the r–θ plane for the Fourier
coefficients are solved by finite differencing. The solver shows an extremely fast comput-
ing speed, e.g., the computation for a magnetogram with a resolution of 180(θ) × 360(φ)

is completed in less than 2 s. Even on a high-resolution 600 × 1200 grid, the solution can
be obtained within only about one minute on a single CPU. The solver can potentially be
applied directly to the original resolution of observed magnetograms from SDO/HMI for
routinely analyzing daily full-disk data.

Keywords Fast solver · Linear force-free fields · Potential fields · Solar corona

1. Introduction

Magnetic field extrapolation is an important tool to study the three-dimensional (3D) so-
lar coronal magnetic field, which is difficult to directly measure (Sakurai, 1989; Aly, 1989;
Amari et al., 1997; McClymont, Jiao, and Mikic, 1997; Aschwanden, 2005; Wiegelmann,
2008). Three models being used most popularly for field extrapolation are the potential-
field model, the linear force-free field (LFFF) model, and the nonlinear force-free field
(NLFFF) model. On a large scale involving global structures, coronal fields are usually ex-
trapolated from the line-of-sight (LoS) magnetogram using the potential-field model with
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some kind of upper boundary condition to emulate the effect of the solar wind expan-
sion, e.g., the potential-field source-surface (PFSS) model (Altschuler and Newkirk, 1969;
Schatten, Wilcox, and Ness, 1969; Hoeksema, 1984). By these models and by using syn-
optic magnetic field data, the extrapolated global fields can be computed and they are used
to study the general structures of the corona and the heliosphere (e.g., the location, shape,
and size of coronal holes, coronal streamers, and heliospheric current sheet, and their evolu-
tion). With some empirical relations developed in the Wang–Sheeley–Arge (WSA) model,
the PFSS field can also be used to predict the solar wind speed and the interplanetary mag-
netic field (IMF) at the Earth (Wang and Sheeley, 1990; Arge and Pizzo, 2000). On a local
scale with fine structures, when one’s interest is focused on the active regions, LFFF and
more general NLFFF extrapolation which needs vector magnetograms are more suitable to
characterize the strongly non-potential regions with significant currents. The three models
are governed by the same force-free equation

∇ × B = αB, ∇ · B = 0, (1)

where B is the magnetic field vector, α is a scalar function called force-free parameter. The
potential model is represented by α = 0, which means that no electric current is present in
the field volume, and the equation can be simplified as B = ∇ψ with ∇2ψ = 0. The LFFF is
denoted by α = constant and NLFFF by generally variable α but invariable along each field
line.

The currently available methods for global potential field are mainly based on expan-
sion of spherical harmonics or a full 3D finite-difference scheme. The spherical harmonic
expansion (SPHE) method can be easily implemented and the field value is expressed
in an analytic form at an arbitrary location above the solar surface. The full 3D finite-
difference method is much more complicated by numerically discretizing the Laplace equa-
tion ∇2ψ = 0, which results in a large sparse linear equation system for all the unknowns
ψi,j,k needed to be solved. What makes its implementation complicated is that such lin-
ear equations cannot be solved directly and an iterative approach is generally necessary.
For relatively low-resolution data like a 180 × 360 magnetogram, these methods perform
good and fast with results coming out in minutes or less than an hour on a single CPU.
However, it could be very unsatisfactory if one wants to apply these methods to very high-
resolution data matching the observations in an operational basis, for example a 1080×3600
synoptic magnetogram from SOHO/MDI and a 4096 × 4096 full-disk magnetogram from
SDO/HMI. In our experience, the SPHE method implemented by the PFSS package1 in the
SolarSoftWare (SSW) library takes about several minutes for a resolution of 180 × 360,
but requires more than two hours when the resolution is doubled (see Section 4), which
means the computing time is scaled up by 40 times and it could be even unbearable for
much larger magnetograms. Very recently, Tóth, van der Holst, and Huang (2011) devel-
oped a full 3D finite-difference iterative potential solver (FDIPS)2 which uses a bi-conjugate
gradient-stabilized (BiCGSTAB) iterative method (Van der Vorst, 1992) to solve the result-
ing linear system with an incomplete lower-upper decomposition (ILU) preconditioner. As
reported their solver needs about an hour when applied to a resolution of 180 × 360, while
to perform on much higher resolutions within a time of hours, it can only rely on massively
parallel computation.

1http://www.lmsal.com/~derosa/pfsspack.
2http://csem.engin.umich.edu/fdips/.

http://www.lmsal.com/~derosa/pfsspack
http://csem.engin.umich.edu/fdips/
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The present work is devoted to the development of a new fast and unified solver for
computing the global potential and LFFF fields by a combination of the Fourier series ex-
pansion and the finite-difference (FD) schemes. It will be shown that our mixed spectral
finite-difference (MSFD) solver is extremely fast by computing the solution to a problem of
180 × 360 data points within about a second and even a computation of 600 × 1200 is fin-
ished in only nearly a minute on a single CPU. This solver is also capable of solving a LFFF
field on the same magnetogram with arbitrarily given force-free parameter α without costing
any additional computational resources. A global LFFF model is criticized and rarely con-
sidered for the global corona due to the facts that the magnetic energy is unbounded (See-
hafer, 1978) and generally the large-scale force-free parameter α (also known as the current
helicity) has opposite signs between the hemispheres (Pevtsov, Canfield, and Metcalf, 1995;
Bao and Zhang, 1998). However, a global LFFF solver can still be used for many other
applications, for example, initializing the global NLFFF or magnetohydrodynamics codes
(Jiang and Feng, 2012; Jiang, Feng, and Xiang, 2012; Feng et al., 2012). Recently, Hu and
Dasgupta (2008) developed a non-force-free field model that can represent the local and
global coronal fields. In their non-force-free model based on the principle of minimum dis-
sipation rate, the magnetic field is expressed as the superposition of one potential field and
two LFFFs. To match the numerical solution with the measured magnetogram, the parame-
ters α of the LFFFs are determined by a trial and error procedure which needs many times
of LFFF computations. If the model is used for the global corona, a fast global LFFF solver
is highly desirable and our solver can be a good candidate to meet the need. In view of its
very fast speed for dealing with high-resolution data, our global LFFF solver can also be ap-
plied directly to the extrapolation of local LFFF for active regions, and the computation can
benefit because there is no need to consider the lateral boundaries, which cause problems in
the codes designed for local extrapolation.

The remainder of the paper is organized as follows. In Section 2 we review the LFFF
equation in spherical coordinates and its boundary conditions. In Section 3 the numerical
algorithm of the MSFD solver is described. The results are validated and discussed in Sec-
tion 4 and finally we draw conclusions in Section 5.

2. The LFFF Equation in Spherical Coordinates

In spherical geometry, the linear force-free equation can be written equivalently as

B = ∇ × (∇ × ψer) + α∇ × ψer, (2)

where er is the unit vector in the radial direction and the scalar function ψ(r, θ,φ) satisfies
the Helmholtz equation (Seehafer, 1978; Durrant, 1989)

(∇2 + α2
)
ψ = 0. (3)

Expressed in components, Equation (2) becomes

Br = −
[
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At the solar surface (photosphere) r = R with the radial component of the magnetic field
M(θ,φ) given,3 we have

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

sin2 θ

∂2ψ

∂φ2
= −R2M(θ,φ), (5)

which is a two-dimensional (2D) Poisson equation on the spherical surface. By solving this
equation we obtain the value of ψR ≡ ψ(R, θ,φ) on the solar surface which serves as the
bottom boundary condition for the Helmholtz equation (3). Besides, a second boundary
surface is needed to be set for numerical discretization of the Helmholtz equation. For this
purpose we simply specify the upper boundary condition at a source surface RS similar to
the PFSS model as

∂ψ

∂r
= 0 at RS = 2.5R. (6)

Then the Helmholtz equation is well defined in the spherical shell (R ≤ r ≤ RS) by the
Dirichlet boundary condition at the inner surface and the Neumann boundary condition at
the outer surface. Note that defining the outer boundary condition in the above way makes
the LFFF solution with α = 0 the same as the PFSS model, because Equation (6) ensures
Bθ = Bφ = 0 according to Equation (4) with zero α. Durrant (1989) suggested another way
of defining the outer boundary condition by minimizing the tangential field on the source
surface. Setting an upper boundary for the global LFFF is also required theoretically since a
magnetic field being force-free with nonzero constant α everywhere outside the sun cannot
have a finite energy content and may even not have a unique solution (Chiu and Hilton, 1977;
Seehafer, 1978; Gary, 1989).

For solely solving the potential field, it is preferred in consideration of numerical accu-
racy to solve the Laplace equation ∇2ψ = 0 (with boundary conditions ∂ψ/∂r|R = M and
ψ |RS = 0) to compute B by B = ∇ψ rather than computing the LFFF with α = 0, because
if ψ is obtained with the same accuracy, deriving the magnetic vector from B = ∇ψ is more
accurate than using Equation (2), which needs a second-order mixed difference. In the code
we have implemented both ways for computing the potential field. Anyway, computation of
the LFFF and potential field can be unified by using the same 3D Helmholtz solver.

3. Numerical Method

The computing kernel we need is a 2D sphere Poisson solver for Equation (5) and a 3D
Helmholtz solver for Equation (3) or the Laplace equation (α = 0). Here we developed
the solvers in a similar way as that proposed by Lai, Lin, and Wang (2002). The basic
ideal is combining the spectral and the finite-difference methods. According to the periodic
condition in the longitudinal direction, function ψ can be expressed by a Fourier series of
φ and then the Fourier coefficients are solved by the finite-difference method in the (r, θ)

plane. In this way we can avoid the 3D-difference discretization, which results in a large
linear system that cannot be solved by any direct method. Specifically function ψ can be
approximated by the discrete Fourier series

ψ(r, θ,φ) =
N/2−1∑

n=−N/2

ψn(r, θ)einφ, (7)

3Generally observations do not give the radial component M but the line-of-sight component of the field
(B�), and M is converted from B� assuming that the field is radial at the photosphere.
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where ψn(r, θ) is the complex Fourier coefficient given by

ψn(r, θ) = 1

N

N−1∑

k=0

ψ(r, θ,φk)e
−inφk , (8)

and φk = 2πk/N and N is the number of grid points in the φ-direction. Substituting the
Fourier series (7) into Equation (3) gives

∂2ψn

∂r2
+ 2

r

∂ψn

∂r
+ 1

r2

∂2ψn

∂θ2
+ cot θ

r2

∂ψn

∂θ
+

(
α2 − n2

r2 sin2 θ

)
ψn = 0. (9)

Substituting the Fourier series (7) into the boundary equation (5) gives

d2ψn(R, θ)

dθ2
+ cot θ

dψn(R, θ)

dθ
− n2

sin2 θ
= −R2Mn(θ), (10)

where Mn(θ) is the Fourier coefficient of the magnetogram M(θ,φ). By first solving the
preceding ordinary differential equation (10) and then the 2D partial differential equation
(PDE), Equation (9), using a finite-difference method, we obtain the Fourier coefficients
ψn and thus the solution ψ . The Fourier transform can be routinely implemented by the
discrete Fourier transform (DFT) functions in Intel’s Math Kernel Library (MKL) and the
finite-difference algorithm is described as follows.

A uniform grid is used and to avoid the pole problem (i.e., the denominator sin θ = 0
when θ = 0 or π ), the grid is shifted by one-half mesh width in the θ -direction as

ri = R + i	r, θj = (j − 1/2)	θ, (11)

for i = 0, . . . ,L + 1, j = 0, . . . ,M + 1 with the grid size 	r = (RS − R)/(L + 1) and
	θ = π/M . The grid boundaries at j = 0 and j = M + 1 serve as ghost points and the real
boundary conditions are specified at i = 0 (solar surface) and i = L + 1 (source surface).
Denoting the discrete values as ui,j = ψn(ri, θj ) and applying the centered difference to
Equation (10), we have

u0,j+1 − 2u0,j + u0,j−1

(	θ)2
+ cot θj

u0,j+1 − u0,j−1

2	θ
− n2

sin2 θj

u0,j = −R2Mn(θj ), (12)

for j = 1, . . . ,M . This is a tridiagonal linear system for u0,j , which can be solved by Gaus-
sian elimination with O(M) arithmetic operations. The boundary condition can be deduced
from the periodic condition ψ(r, θ,φ) = ψ(r,−θ,φ + π), which says

ψ(r,−θ,φ + π) =
N/2−1∑

n=−N/2

ψn(r,−θ)ein(φ+π) =
N/2−1∑

n=−N/2

(−1)nψn(r,−θ)einφ. (13)

Comparing the coefficients of Equation (7) and Equation (13) gives

ψn(r,−θ) = (−1)nψn(r, θ). (14)

Similarly, ψn(r,π + θ) = (−1)nψn(r,π − θ) is also satisfied. Then the boundary condition
for Equation (12) is

u0,0 = (−1)nu0,1, u0,M+1 = (−1)nu0,M . (15)

It should be noted that when n = 0 the solution to Equation (12) is non-unique upon a
constant, and we choose u0,1 = 0 to determine the solution.

In the same way, applying the centered difference to Equation (9) gives
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r2
i

ui+1,j − 2ui,j + ui−1,j

(	r)2
+ 2ri

ui+1,j − ui−1,j

2	r
+ ui,j+1 − 2ui,j + ui,j−1

(	θ)2

+ cot θj

ui,j+1 − ui,j−1

2	θ
+

(
α2r2

i − n2

sin2 θj

)
ui,j = 0 (16)

for the internal points 1 ≤ i ≤ L,1 ≤ j ≤ M , and the ghost point values can be given by

ui,0 = (−1)nui,1, ui,M+1 = (−1)nui,M. (17)

On the solar surface, for solving the LFFF we have the boundary condition on u0,j obtained
from Equation (12), or for only the potential field we use one-sided difference of second-
order for the Neumann boundary condition ∂ψ

∂r
= M ,

−3u0,j + 4u1,j − u2,j

2	r
= Mn(θj ), (18)

which can maintain the same accuracy with the centered difference. On the outer surface for
LFFF we have

−3uL+1,j + 4uL,j − uL−1,j

2	r
= 0, (19)

or for the potential field uL+1,j = 0.
The above discrete equations (16) along with the boundary conditions lead to a linear sys-

tem for unknowns ui,j with a L × L block-tridiagonal coefficient matrix. This large system
can generally be handled by the iterative methods, such as the Krylov-space solver (e.g., the
BiCGSTAB). Fortunately, a direct solver exists for this special type of linear systems by the
generalized cyclic reduction method (Swarztrauber, 1974). An open-source Fortran package
Fishpack4 (Adams, Swarztrauber, and Sweet, 1980) has been designed for directly solving
similar linear systems (from the finite difference of 2D separable elliptic PDEs) using cyclic
reduction. The subroutine named cblktri.f in Fishpack for complex block-tridiagonal
linear systems is utilized for our purpose. Accordingly, Equation (16) is written as

a1(i)ui+1,j + a2(i)ui−1,j + [
b1(i) + b2(j)

]
ui,j

+ c1(j)ui,j+1 + c2(j)ui,j−1 = d(i, j) (20)

with the coefficients

a1(i) = r2
i − ri	r

(	r)2
, a2(i) = r2

i + ri	r

(	r)2
, b1(i) = α2r2

i − 2r2
i

(	r)2
,

(21)

b2(j) = −2

(	θ)2
− n2

sin2 θj

, c1(j) = 1 + 1
2 cot θj	θ

(	θ)2
, c2(j) = 1 − 1

2 cot θj	θ

(	θ)2
,

and these coefficients are provided as input arguments to cblktri.f to find the solu-
tion. Note that neighboring to the boundary the coefficients should be adjusted properly
according to the boundary conditions (see Equations (17) – (19)). The number of operations
needed by the subroutine is O(ML log2 L). It should be noted here that a direct solver is
very suitable for the present 2D linear system of which the matrix size is not too large and
a parallel computation is not necessary. For a very large system such as that resulting from
the scheme of full-3D difference of equations, iterative schemes may be more efficient and
robust especially on parallel machines.

4http://www.netlib.org/fishpack.

http://www.netlib.org/fishpack


Computation of Global Potential and LFF Fields 627

Table 1 Benchmark tests of the solvers. The resolution is given by L = M = N/2, and x = r sin θ cosφ,y =
r sin θ sinφ, z = r cos θ . L∞ error is the maximum error between the numerical solution and the exact solu-
tion, and L∞ order is the convergence order of the L∞ error in terms of the mesh size.

Solver Test solution Resolution N L∞ error L∞ order

2D Poisson solver ψ = sin θ cosφ 32 9.355E-04

64 2.256E-04 2.05

128 5.642E-05 2.00

ψ = cos θ sin2 θ cos(2φ − 3) 32 4.106E-03

64 1.031E-03 1.99

128 2.573E-04 2.00

3D Helmholtz solver ψ = sin(x + y + z),α = √
3 32 2.316E-02

64 6.168E-03 1.91

128 1.566E-03 1.98

ψ = sinx siny sin z,α = √
3 32 5.496E-03

64 1.348E-03 2.03

128 3.412E-04 1.98

In Table 1 we give results of several benchmark tests for the 2D Poisson and the 3D
Helmholtz solvers using analytic solutions. For the 3D tests, we use the Dirichlet boundary
condition at the inner surface and the Neumann condition at the outer surface. The conver-
gence rates of the results show that the designed order of accuracy is well achieved.

After obtaining ψ , the final vector B can be derived according to Equation (2) or B =
∇ψ for only the potential field. Either full-3D difference or the same procedure of Fourier
transform in φ and finite difference in (r, θ) can be used to get B and we will compare the
results of using these two schemes in Section 4.

A non-uniform radial grid is also preferred such as 	r ∼ r or 	r ∼ r2 for saving com-
putational resources, but then the centered difference cannot be applied directly due to the
unequal grid space. To extend the above solver to a non-uniform radial grid, we transform
Equation (9) from a given non-uniform radial grid r to a new uniform radial grid ξ using the
relations

r = r(ξ),
∂u

∂r
= ξr

∂u

∂ξ
,

(22)
∂2u

∂r2
= ∂

∂r

(
ξr

∂u

∂ξ

)
= ξrr

∂u

∂ξ
+ ∂2u

∂ξ 2
ξ 2
r ,

with ξ as the new radial coordinate (here u represents an arbitrary function). For example
one can simply set ξ = i in a discrete sense, thus ri = r(i) = r(ξ). To derive ξr and ξrr , we
have

ξr = 1

rξ

, (23)

ξrr = d

dr

(
1

rξ

)
= −(rξξ ξr )/(rξ )

2 = −(rξξ )/(rξ )
3, (24)

where

rξ = ri+1 − ri−1

2
, rξξ = ri+1 − 2ri + ri−1. (25)
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Then the centered-difference method is applied to the transformed equations. If necessary,
the same procedure can also deal with a non-uniform longitude or latitude grid (e.g., the
uniform-spaced sine-latitude mesh with which the synoptic maps are usually provided).

Finally, in order that Equation (5) has a solution on the sphere, the right-hand side func-
tion M(θ,φ) must satisfy the compatibility condition

∮
M(θ,φ)ds = 0, (26)

which is also the divergence-free constraint for the magnetogram. However, in measured
data this cannot be guaranteed, thus usually a deviation of 	M is subtracted from the map
to fulfill the flux-balance condition

∮
(M − 	M)ds = 0, (27)

and we choose 	M = k|M| to retain the global structure in the map (e.g., the magnetic

neutral lines at M = 0). This gives the coefficient k as k =
∮

M ds∮ |M|ds
.

4. Results

To validate the MSFD method, we compare our solution for the potential with that computed
by the PFSS package in SSW. We take the extrapolation of Carrington rotation (CR) 2029
as an example. The synoptic map for Br is obtained from SOHO/MDI with an original
resolution of 1080 × 3600 on the sin θ–φ plane. We remap and rebin the original data onto
the θ–φ plane. Both solutions are computed on the same grid with a size of 54(r)×180(θ)×
360(φ), which is uniform in the θ–φ plane and non-uniform in the radial direction (	r =
r	θ). In the MSFD method, as noted in Section 2, we compute the field by solving the
Laplace equation and then using two schemes to get B from B = ∇ψ = (

∂ψ

∂r
, 1

r

∂ψ

∂θ
, 1

r sin θ

∂ψ

∂φ
),

i.e.,

i) the scheme of combined spectral/finite-difference method as described above (referred
to as the MSFD-M solution in the following) and

ii) a full-3D finite-difference method (referred to as the MSFD-FD solution).

In fact for components Br and Bθ , both the MSFD-M and the MSFD-FD schemes give
exactly the same solution and the only difference between them is the longitudinal com-
ponent Bφ . To compute the longitudinal derivative ∂ψ

∂φ
, the MSFD-FD scheme performs

centered difference on the grid point values ψi,j,k , while the MSFD-M scheme differentiates
directly the discrete Fourier series (Equation (7)) term-by-term, which gives

∂ψ

∂φ
=

N/2−1∑

n=−N/2

inψn(r, θ)einφ. (28)

In the SSW/PFSS package the solution is obtained by SPHE with the highest order of Lmax =
180.

Figure 1 compares the 3D field lines of the solutions, which are highly consistent with
each other (for the MSFD method only the MSFD-M solution is shown, since the MSFD-FD
solution is almost the same). Only by a careful inspection can very small difference be found
between them, and this difference is due to the numerical discretization errors. In Figure 2
we compare quantitatively the field values by plotting the contours of the two solutions on
the same figure. The left column is the solutions sliced at a height of r10 = 1.19R and the



Computation of Global Potential and LFF Fields 629

Figure 1 Comparison of the 3D field configurations between our solution (left) and that by SSW/PFSS
(right). Closed field lines are rendered with white color and open field lines are rendered with pink and green
according their polarities.

right column for r30 = 1.68R. Again the differences are rather small since the contours of
different solutions almost overlap each other.

In Figure 3 we plot profiles of the field values along the radial line of (θ,φ) = (20◦,50◦).
This figure shows obvious difference between the solutions only near the solar surface
r = R. To show how the deviation of the entire solutions behaves along the radial direc-
tion, the average relative error between our solutions B and the SSW/PFSS solution Bssw is
calculated as

En(ri) =
∑

j,k |B(ri, θj , φk) − Bssw(ri, θj , φk)|
∑

j,k |Bssw(ri, θj , φk)| , (29)

which are plotted in the bottom-right panel in Figure 3 (the black line denotes the MSFD-FD
solution and red for the MSFD-M solution). As can be seen, the error En at the solar surface
is rather large with a value of ≈ 0.5. It drops very quickly to nearly 2 % and the solutions
match quite well above r = 1.1R. This near-surface error is caused by different numerical
errors in the methods, which become significant especially near the bottom boundary.

Figure 4 shows the computed magnetic maps on the solar surface by different methods.
For instance, the derived field Br in our method matches exactly the given boundary data
M(θ,φ) because the discrete Fourier series is precise at the grid nodes, while it cannot
be ensured in the SPHE method due to the truncation terms unless the expansion order
Lmax goes to ∞. Because of the truncation errors, the simulated synoptic map by the SPHE
method usually shows ringing patterns surrounding strong magnetic features (Tran, 2009;
Tóth, van der Holst, and Huang, 2011). Such aliasing effect is more obvious for the case
with lower Lmax as shown by the result of Lmax = 90 in Figure 4. On the other hand the
value of Lmax should not exceed an upper limit determined by the size of the data (Tran,
2009), in order not to over-sample. Therefore a reasonable upper limit is 360◦/(2	) where
	 is the size of a pixel in the map (e.g., 	 = 1◦ in the present case). That is why we use
Lmax = 180 for the SSW/PFSS solution. As can be seen in Figure 4, the MSFD-M solution
for Bφ also shows obvious aliasing in the φ direction, especially across the strong magnetic
features, while the solution for Br and Bθ does not show such artifacts. The oscillations in
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Figure 2 Contours of the field values in our solution (black lines) and in the SSW/PFSS solution (blue lines)
at heights of r10 = 1.19R (left column) and r30 = 1.68R (right column).

the MSFD-M solution is due to the fact that the DFT-based differentiation (Equation (28))
is not accurate for functions with sharp gradients or discontinuities because of the Gibbs
phenomenon (e.g., see Canuto et al., 2006).

We further compare the surface solutions by plotting the calculated magnetic field com-
ponents as a function of longitude φ along a given latitude (θ = 104.5◦, which is chosen to
show the magnetic field across some active regions with strong field gradient) in Figure 5.
The SSW/PFSS solution (blue curves in the figure) exhibits high-frequency oscillations of
an amplitude of ≈ 10 G (gauss) overlying the MSFD-FD solution (black curves). The oscil-
lations of Bφ seen in the MSFD-M solution (the red curves in the third panel of the figure)
are much larger with an amplitude exceeding 20 G and exhibit obvious overshoot across the
active regions. The reason for these oscillations can be well understood by inspecting the
last panel of Figure 5, in which the grid-node values (black dots) and the discrete Fourier
series (the red curve) of ψ are plotted. It is the differentiation of high-frequency mode terms
that gives the oscillations in the longitudinal derivatives. On the other hand, centered differ-
ence on the grid-node solution can avoid such oscillations. By comparison, we conclude that
the MSFD-FD scheme gives the most accurate and reasonable solution that does not exhibit
those artifacts. It is also expected that the artifacts manifest only near the surface where the
fields are very rough. As shown by Figure 6, in which the same field profiles as in Figure 5
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Figure 3 Profiles of field values Br (top left), Bθ (top right), and Bφ (bottom left) in units of gauss (G) at
θ = 20◦ and φ = 50◦ as a function of r . The bottom right panel shows the profile of relative error En as a
function of r . The blue lines denote the SSW/PFSS solution, the black lines for the MSFD-FD solution, and
red lines for MSFD-M solution.

Figure 4 Magnetic maps on the solar surface computed by different methods: (a) the SSW/PFSS software
with the expansion order Lmax = 180; (b) SSW/PFSS with Lmax = 90; (c) the MSFD-M scheme; (d) the
MSFD-FD scheme. The top row is for the radial field component Br , the second row for Bθ , and the bottom
row for Bφ . The saturation values for these maps is ±20 G.

but at the radius of r2 ≈ 1.035R (i.e., two grid points above the photosphere) are plotted, the
oscillations almost disappear.

Another point we can notice in Figure 6 is that the SSW/PFSS solution is somewhat
smoother than the MSFD solutions, particularly within the active regions. This is probably
due to the finite differencing in our method, which can reproduce local sharp gradients (e.g.,
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Figure 5 Examples of the solution on the solar surface (r0 = 1R) at a given latitude (θ = 104.5◦) as a
function of longitude φ. In the first three panels, the blue curves represent the SSW/PFSS solution, the red
represents the MSFD-M solution, and the black the MSFD-FD solution. The range of the ordinates is limited
to ±100 G to emphasize the numerical artifacts in the solutions. Note that the MSFD-M and MSFD-FD
solutions for Br and Bθ are exactly the same and thus the red lines overlap the black lines in the first two
panels. The last panel gives the grid-node solution of ψ (black dots) and its discrete Fourier series (the red
curve).
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Figure 6 Same as Figure 5 but for the field at radius r2 ≈ 1.035R.

discontinuities) more precisely than the full spectral method, which uses superposition of
smooth functions to express the solution.

A great advantage of our MSFD solver is its extremely fast computing speed. In Ta-
ble 2 we list the computing times of a series of tests with increasing mesh resolutions up to
177(r) × 600(θ) × 1200(φ). These tests are performed on a single Intel Xeon CPU E5430
(2.66 GHz). For a relatively low resolution (	 = 2◦) the solver needs only less than one fifth
of a second, and for a higher resolution (	 = 0.5◦) it only requires a quarter of a minute.
Even for the highest resolution (600×1200) the computation is completed nearly within one
minute. In the MSFD method, most of the computing time is consumed by the Helmholtz
solver. For each Fourier coefficient ψn we need O(ML log2 L) operations and by taking
advantage of the conjugate symmetry of the coefficients, i.e., ψ−n = ψn, we have to solve
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Table 2 Computing time needed
by our MSFD solver and the
SSW/PFSS package for different
resolutions.

Resolution CPU time (MSFD) CPU time (SSW/PFSS)

28 × 90 × 180 0.16 s 14.20 s

54 × 180 × 360 1.47 s 3 m 33 s

107 × 360 × 720 14.64 s 2 h 5 m

159 × 540 × 1080 54.81 s

177 × 600 × 1200 1 m 18 s

totally N/2 + 1 coefficients. Thus the total number of operations is O(N
2 ML log2 L). When

the resolution is doubled, the computing time increases about eight times because

N × 2M × 2L log2 2L
N
2 ML log2 L

= 8(1 + 1/ log2 L) ≈ 8. (30)

Table 2 also shows the computing times of SSW/PFSS, and our code performs better. The
highest order Lmax for each resolution is given by Lmax = 360◦/(2	). The SPHE method
computes relatively fast on low-resolution data, but the CPU time drastically increases for
high resolutions. As shown in the table when we double the resolution to 360 × 720, the
computing time increases almost 40 times and we give up the tests of higher resolution
using the SSW/PFSS because it may take tens of hours. Since the SSW/PFSS is coded
within IDL (Interactive Data Language), it could be much faster if coded using Fortran but
a SPHE implementation in Fortran 90 by Tóth, van der Holst, and Huang (2011) still takes
tens of minutes to compute the 180 × 360 solution.

Our method is also much faster than full-3D finite-difference methods, e.g., a code devel-
oped by Tóth, van der Holst, and Huang (2011). As reported, their FDIPS solver takes about
one hour on a 2.66 GHz Intel CPU even for data of 180 × 360 points, and it is necessary
to use a massively parallel computer for larger magnetograms if one expects to obtain the
result in an acceptable amount of time (for example it takes over five hours on 108 CPUs
for a high resolution of 540 × 1200). It is also worth noting that the 3D-difference method
with an iterative solver is problem dependent, which means that the convergence speed may
also differ for different magnetograms. For instance the computation on a very discontinu-
ous magnetogram is slower than on a much smoothed one. For real solar magnetic fields,
small structures with rather strong magnetic gradient usually show up in a high-resolution
magnetogram, and thus it will become more unfavorable for the 3D-difference scheme. Our
method simply gives the same computing speed for any magnetogram as long as the reso-
lution is fixed, because the linear equation after discretization is solved in a direct way. The
fast computing speed without a problem-dependent nature makes our method very suitable
for routine pipeline computation for the high-resolution magnetogram, e.g., from SDO/HMI.

Finally in Figure 7 we show the results for LFFF solutions for the same CR2029 magne-
togram, with several different values of α. The computing speed for LFFF is the same for
PFSS as reported above. These computations are only numerical tests and do not represent
the real coronal magnetic field, which is very nonlinear. The field lines are twisted as shown
and the open fields begin to wind around the Sun (very clearly if seen in a polar view), which
is unreasonable for real fields. Also as expected the twist for positive α is opposite to the
results for negative α.



Computation of Global Potential and LFF Fields 635

Figure 7 LFFF solutions for the data of Carrington rotation 2029 using different values of α.
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5. Conclusions

In this paper, we have developed a fast solver for the global potential fields and linear force-
free fields which solves under a common formulation a 3D Helmholtz equation in a spherical
shell and a 2D Poisson equation on the photosphere. The solver is based on a combination of
the spectral method and the finite-difference scheme. In the longitudinal direction the equa-
tion is transformed into the Fourier spectral space and the resulting 2D equations in the r–θ

plane for the Fourier coefficients are solved in a direct way. The solver can flexibly handle
either uniform or non-uniform mesh in the radial direction. We have validated the solver by
comparing the results with the potential-field solution obtained by the SSW/PFSS package
on the same grid. The comparison shows that both solvers give quite the same solution above
1.1R, but slightly different results near the solar surface. Near the solar surface, our solver
is more accurate than the SPHE method and the boundary condition is exactly matched. Un-
like the full-3D finite-difference iterative solver, our method is problem-independent, which
means that it requires the same computing time for any complex magnetogram as long as
the resolution is fixed. This solver is capable of solving a LFFF on the same magnetogram
with an arbitrarily given force-free parameter α and without any additional computational
resource needed.

Our solver shows a distinct virtue of extremely fast speed. The computation on a mag-
netogram with a size of 180 × 360 points is completed in less than two seconds. Even
on very high-resolution 600 × 1200 data, the solution can be obtained within only about
one minute on a single 2.66 GHz CPU. The computing time scales with the resolution
as ≈ O(MNL) and applications to the original resolution of 1080 × 3600 points of a
SOHO/MDI synoptic map can be expected to be processed within one hour. Such high-
resolution computation may only be prohibited by the memory limitation of a single com-
puter. The problem can be solved by installing the code on a distributed-memory parallel
computer with the message-passing-interface (MPI) library. Such installation can be easily
done because the code is simple and the parallelization can be naturally performed among
the coefficient equations with each equation handled independently. It is expected that the
parallelized solver will be speeded up further and be applied to the original resolution of
SDO/HMI for routinely analyzing daily full-disk data. Our code is freely available for down-
load on the website of https://sourceforge.net/projects/glfff-solver or C.W. Jiang’s homepage
http://www.cwjiang.net/code.
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