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ABSTRACT

The focused transport equation (FTE) includes all the necessary physics for modeling the shock acceleration of
energetic particles with a unified description of first-order Fermi acceleration, shock drift acceleration, and shock
surfing acceleration. It can treat the acceleration and transport of particles with an anisotropic distribution. In this
study, the energy spectrum of pickup ions accelerated at shocks of various obliquities is investigated based on the
FTE. We solve the FTE by using a stochastic approach. The shock acceleration leads to a two-component energy
spectrum. The low-energy component of the spectrum is made up of particles that interact with shock one to a few
times. For these particles, the pitch angle distribution is highly anisotropic, and the energy spectrum is variable
depending on the momentum and pitch angle of injected particles. At high energies, the spectrum approaches a
power law consistent with the standard diffusive shock acceleration (DSA) theory. For a parallel shock, the high-
energy component of the power-law spectrum, with the spectral index being the same as the prediction of DSA
theory, starts just a few times the injection speed. For an oblique or quasi-perpendicular shock, the high-energy
component of the spectrum exhibits a double power-law distribution: a harder power-law spectrum followed by
another power-law spectrum with a slope the same as the spectral index of DSA. The shock acceleration will
eventually go into the DSA regime at higher energies even if the anisotropy is not small. The intensity of the energy
spectrum given by the FTE, in the high-energy range where particles get efficient acceleration in the DSA regime,
is different from that given by the standard DSA theory for the same injection source. We define the injection
efficiency η as the ratio between them. For a parallel shock, the injection efficiency is less than 1, but for an oblique
shock or a quasi-perpendicular shock it could be greater.
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1. INTRODUCTION

Collisionless shocks such as planetary bow shocks, traveling
shocks driven by coronal mass ejections, the boundaries of
corotating interaction regions, and the heliospheric termination
shock are frequently observed in the heliosphere. Particle
acceleration at shocks has been theoretically and observationally
investigated and is believed to directly account for many
associated high-energy particle phenomena. Basically, there
are three different physical mechanisms involved in the shock
acceleration: first-order Fermi acceleration by the converging
mirrors in the upstream and downstream regions, shock drift
acceleration by the motional electric field at the shock front,
and stochastic acceleration (also regarded as second-order
Fermi acceleration) if the turbulence is effective. A single
encounter with one particle will change a small amount of
energy, but due to the scattering by the medium as a diffusion
process, both in the upstream and downstream regions, and
reflection by the magnetic field kink (in an oblique shock),
some particles cross the shock back and forth many times and
progressively get to high energy. A family of these diffusion and
acceleration processes collectively contribute to the diffusive
shock acceleration (DSA) theory, which is currently regarded as
a well-established efficient acceleration mechanism applicable
to a variety of astrophysical environments (see, e.g., the review
by Drury 1983).

Standard DSA theory is conventionally described by the
Parker transport equation for the isotropic part of the energetic

particle phase space density f (x, p) (Parker 1965):

∂f

∂t
= ∇ · (K · ∇f ) − U · ∇f − Vd · ∇f

+
1

3
p∇ · U

∂f

∂p
+

1

p2

∂

∂p

(
Dppp2 ∂f

∂p

)
, (1)

where K and Dpp are the spatial diffusion coefficient tensor
and the momentum diffusion coefficient, U is the speed of
background plasma, and Vd is the gradient and curvature drift
speed. This equation essentially includes all the major trans-
port effects: convection, drift, spatial diffusion, energy gain
or loss by first-order Fermi acceleration and drift acceleration
integrated as the acceleration term dp/dt = −(1/3)p∇ · U
(Jokipii 1982), and second-order Fermi acceleration. The most
important success of standard DSA theory is that, from both the
macroscopic (solution to the Parker transport equation) and the
microscopic (individual particle adiabatic motion) viewpoints,
it is able to naturally produce a power-law energy spectrum,
and the spectral index depends on the shock strength (com-
pression ratio). The power-law spectrum is a common feature
appearing in the observations of all types of energetic parti-
cles such as the solar energetic particle (SEP), galactic cosmic
ray (GCR), anomalous cosmic ray, etc. Any successful accel-
eration theory should produce this feature (Giacalone & Kota
2006).

Strictly speaking, in the approximation of diffusion resulting
from a strong pitch angle scattering, standard DSA is only
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applicable if the pitch angle distribution (PAD) of particles
is near-isotropic in the plasma frame. This assumption is not
always satisfied, especially for low-energy particles with speeds
close to the plasma speed. At the termination shock, the low-
energy termination shock particles (TSPs) are observed in the
foreshock region with energy below ∼20 MeV (Stone et al.
2005). The observations of spacecraft Voyager 1 and Voyager 2
indicate that the TSPs are highly anisotropic in the foreshock
region even with the beam directly along the heliospheric
magnetic field near the termination shock (Decker et al. 2005).
Therefore, the acceleration of these particles cannot be described
adequately by the standard DSA theory.

In recent years, we have seen dramatic progress regarding the
shock acceleration theory. Le Roux et al. (2007) and Florinski
et al. (2008a, 2008b) began to apply the focused transport
equation (FTE) to study the shock acceleration problem. The
FTE describes the evolution of the gyrotropic distribution
function f (x, v, μ) of energetic particles as the function of
space position x, particle speed v, and the pitch angle cosine
μ = cos θ . It treats the interaction of an energetic particle with
the magnetic irregularities as scattering and adiabatic focusing
in pitch angle, and the parallel spatial diffusion is replaced by
the pitch angle diffusion. The equation is capable of solving the
evolution of the particle in μ space with no restriction, allowing
the particle distribution function to be highly anisotropic. The
applicability of FTE to particle injection at shock waves is rooted
in the fact that particles can only move upstream through pitch
angle scattering or focusing in combination with the speed of
particle streaming. If the speed of a particle is too low or it
cannot change in pitch angle, it cannot achieve repeated shock
acceleration. This is a fundamental difference from the DSA
theory, which relies solely on diffusion (which has an infinite
speed on a short timescale) to send particles back upstream. The
focused transport theory based on FTE essentially contains all
the acceleration processes such as drift, reflection, scattering,
etc., which will be discussed in detail in the following sections.
Because it is a useful tool for solving the shock acceleration for
particle distribution with a large anisotropy, we call it anisotropic
shock acceleration theory.

Le Roux et al. (2007) studied pickup ion acceleration in a
local area at shocks based on focused transport theory. In their
model test, the interstellar core ∼1 keV pickup protons are in-
jected and accelerated in the vicinity of a steady-state shock.
For the parallel and oblique shocks, the model can roughly pro-
duce some of the main features of Voyager energetic particle
observations near the termination shock, including the intensity
spike across the shock, extremely large anisotropy in the up-
stream, and a power-law energy spectrum at higher energies.
At a highly oblique shock, it is found that it is not sufficient to
accelerate the original pickup ions because most of the parti-
cles encounter the shock only once, and the particles merely get
some shock drift acceleration. Florinski et al. (2008a, 2008b)
and Florinski (2009) also carried out similar modeling work. A
technique of a three-moment expansion using Legendre poly-
nomials to FTE is employed; this is computationally efficient.
When the pre-accelerated pickup ions with speed exceeding the
injection threshold are injected into the highly oblique termi-
nation shock, the shock is able to sufficiently accelerate the
pickup ions. Essentially, their simulation can explain the ob-
served anisotropy feature and the intensity spike phenomena
near the termination shock. However, a deficiency occurs in this
model. Since it only takes limited moments of the FTE expan-
sion in Legendre polynomials, the results are an approximative

solution to the full FTE. An important spectral feature obtained
in both of the two models is that the acceleration spectrum
downstream of the shock at higher energies (compared with the
injection particle energy) is a little harder than the prediction of
standard DSA theory in the non-parallel shock. Recently, notic-
ing the time-dependent nature of the TSP anisotropy and energy
spectrum, le Roux & Webb (2009) adopted a time-dependent fo-
cused transport approach by introducing a variable shock obliq-
uity to model the pickup ion acceleration by the termination
shock. This simulation successfully reproduces the time vari-
ation properties of anisotropy in the pre-shock region of the
termination shock observed by the Voyagers. In addition, an en-
ergy spectrum with multiple power laws is obtained. Voyager
1 indeed observed the multiple power-law segments separated
by spectrum breaks in between as the spacecraft traveled near
the termination shock region (Cummings et al. 2006). The suc-
cessful application of FTE to pickup ion acceleration reveals
the promising perspective of the anisotropic shock acceleration
theory.

Synthetically, FTE is a five-dimensional parabolic partial dif-
ferential equation, which is very difficult and time-consuming
to solve numerically. Zhang et al. (2009) developed a stochas-
tic approach to solving the FTE via Monte Carlo simulation of
stochastic differential equations (SDEs) and applied it to study-
ing SEP transportation in the three-dimensional interplanetary
magnetic fields. There is no essential difference between the
environment in the vicinity of the shock and the global helio-
sphere, except that there are discontinuities in the magnetic field
and plasma flow for shocks. This approach is computationally
very efficient in dealing with a high-dimensional diffusion prob-
lem. On this basis, we try to apply this stochastic approach to
re-investigate the anisotropic shock acceleration problem in this
study. For convenience of comparison with the work of le Roux
et al. (2007) and Florinski et al. (2008a, 2008b), we likewise dis-
cuss the pickup ion acceleration in the vicinity of the termination
shock. The termination shock is modeled as a thin ramp with
near-zero thickness, i.e., the discontinuity is treated as a sharp
transition region in the magnetic field and plasma background.
We also compare the results with the solution of standard DSA
theory. Our model can successfully produce the same anisotropy
feature and spatial distribution of an energetic particle as that
obtained from the models of Florinski et al. and le Roux et al..
We focus our discussion on how the anisotropic shock accel-
eration theory using FTE is transformed into DSA. Some new
intriguing spectral features are revealed. In Section 2, we give
the full FTE and discuss its physical content in application to
shock acceleration. In Section 3, the general stochastic method
for the anisotropic shock acceleration is summarily introduced.
We then show the details of the model and the simulation results
in the following three sections. The discussion and conclusion
are given in the last section.

2. FOCUSED TRANSPORT EQUATION AND ITS
APPLICATION TO ANISOTROPIC SHOCK

ACCELERATION

FTE has been widely used to model the transportation and
acceleration of pickup ions and SEPs in the heliosphere (e.g.,
Chalov et al. 1997; Klappong et al. 2001; Kota et al. 2005;
Zhang et al. 2009). The full FTE for the gyrophase-averaged
particle distribution function can be written as (Skilling 1975;
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Webb 1985; Isenberg 1997; Zhang 2006; le Roux et al. 2007)
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where the terms on the right-hand side of Equation (2) are
the perpendicular diffusion, pitch angle diffusion, diffusion in
momentum space, convection with the solar wind incorporating
particle gradient/curvature drift Vd (see Northrop 1963 or Rossi
& Olbert 1970 for expression), streaming along the magnetic
field direction, pitch angle change, and momentum gain or
loss, respectively. The terms in the momentum change are the
adiabatic cooling or gain, acceleration by the parallel electric
field in the plasma frame, and acceleration by inertia force
in the plasma frame. The pitch angle change contains the
following terms: focusing on the non-uniform magnetic field
with a focal length LB = (b · ∇B)−1, pitch angle change
due to anisotropic adiabatic momentum loss, and pitch angle
change due to acceleration by the parallel electric field and by
inertia force. It needs to be emphasized that the variables of
the momentum and pitch angle are defined in the solar wind
plasma frame while the spatial coordinates are defined in a
fixed frame. The advantage of the mixed coordinate has been
pointed out by Zhang (2006). Equations (2)–(5) are rigorously
derived from the quasi-linear theory (e.g., Zhang 2006), except
that in those works the last terms in both dp/dt and dμ/dt were
eventually dropped for particles whose speed is much greater
than the plasma speed. In this derivation, the only assumption is a
quasi-linear approximation with small perturbation amplitude.
We believe this equation is valid for all particles in a small
perturbation system.

In Equation (2), all the first-order terms come from the
adiabatic description of particle motion in an average ambient
magnetic field that convects at the speed U. All the formulae
are consistent with, e.g., Northrop (1963). Calculation of the
parameters for these terms is straightforward once the magnetic
field and the plasma velocity field are given. The second-
order terms, which we normally call Fokker–Planck diffusion,
are from the effect of perturbation due to the presence of
electromagnetic fluctuations. For simple cases, the diffusion
coefficients can be found in Schlickeiser (2002). Both Zhang
(2006) and Schlickeiser (2002) handled more general diffusion

that may be necessary for particles in the magnetosphere or
interstellar medium. The Fokker–Planck diffusion coefficients
κ⊥, Dμμ, and Dpp have been studied theoretically by many
authors (e.g., Zhang 2006; Schlickeiser 2002; Jokipii 1966). In
general, κ⊥ depends on the pitch angle cosine. The isotropic
form K⊥ is the average of κ⊥ in μ space under the assumption
that the isotropic PAD has been used in modeling cosmic-
ray modulation and DSA. Dμμ is related to parallel diffusion
coefficient κ‖, which is also widely used in modeling cosmic-ray
modulation and propagation of SEPs.

Similar to the Parker transport equation, FTE contains all the
necessary physics for modeling the shock acceleration of en-
ergetic particles, which are included in the acceleration term
dp/dt . A portion of shock acceleration comes through the adia-
batic energy change term. Although the shock is an abrupt struc-
ture, treatment with the adiabatic energy change has yielded sur-
prisingly good results in the diffusive acceleration theory (Drury
1983). This is because the average behavior of particles at a
sharp boundary still satisfies the adiabatic approximation (Drury
1983). The pitch-angle-dependent adiabatic energy change for-
mula (Equation (4)) explicitly contains both shock drift acceler-
ation and Fermi acceleration. The drift acceleration is dp/dt =
(1/v)dT /dt = qVd ·E/v in the approximation of the static fluid
background (Webb et al. 1982), where v is the particle speed
and E is the electric field in a fixed reference frame (Northrop
1963). If we use the frozen-in law E + U × B = 0 and adi-
abatic gradient-curvature drift approximation (Rossi & Olbert
1970), the perpendicular drift acceleration rate becomes a part of
Equation (4), i.e., (dp/dt)⊥ = −p(1−μ2)(∇ ·U−bb : ∇U)/2,
sometimes written as (dp/dt)⊥ = −p(1 − μ2)∇⊥ · U⊥/2
(Kota 1985). The Fermi acceleration for magnetized particles
is due to the speed gradient of scattering medium (dp/dt)‖ =
−pμ2bb : ∇U. In the DSA theory, the shock drift accelera-
tion is implicitly contained in the adiabatic energy change term
−p∇ · U/3 when the particle distribution function is nearly
isotropic.

Second, there could be a cross-shock potential that decelerates
the solar wind bulk speed and heats up electrons. This potential is
important to particle acceleration at low energies. The potential
will have a deceleration effect on the particles going through
the shock. However, if the cross-shock electric field is large
enough in the case of a shock ramp with a thickness close
to electron inertia length, the electric field reflects those ions
with a small cross-shock speed back to the upstream region.
Simultaneous drift along the shock causes the particle to gain
momentum through multiple reflections. This process simulates
the multiple reflection acceleration or shock surfing suggested
by Zank et al. (1996) and Lee et al. (1996). Calculations have
been done with an ideal magnetic shock geometry and a very
thin shock ramp. A global treatment that incorporates this
shock acceleration mechanism could easily be realized using
the FTE.

Third, if the speed of the energy particle is comparable to
the solar wind speed, as the solar wind slows down abruptly at
the shock, the particles feel an inertia force in the solar wind
plasma frame (see the term μ(U ·∇U) ·b in Equation (4)). After
subsequent pitch angle scattering and momentum diffusion, the
bulk energy is eventually converted to the internal energy of
particles.

The FTE can be simplified when applied to the shock ac-
celeration. At the shock, particle acceleration is dominated by
the dp/dt term, so we can set the second-order Fermi accel-
eration coefficient as Dpp = 0. Moreover, the perpendicular
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diffusion is much smaller relative to the parallel diffusion that
arises from pitch angle scattering. Only when the shock is almost
exactly perpendicular does the perpendicular diffusion become
important. Under this condition, the term of perpendicular dif-
fusion can also be omitted. As we know, particle gradient and
curvature drift at abrupt boundaries, such as the heliospheric
current sheet or the shock, cannot be neglected when we dis-
cuss the gyrophase-averaged guiding center drift velocity in the
first-order approximation (see le Roux et al. 2007). For shock
acceleration, the drift vector of Vd is always along the shock
surface and perpendicular to the gradient of particle intensity. If
particle distribution is only a function of the spatial coordinate
along the shock normal, the contribution of Vd to the convection
term becomes zero (Vd · ∇f = 0). The drift velocity Vd will
not directly appear in Equation (3) for a one-dimensional shock
geometry. Its effects only show up in the momentum gain as
shock drift acceleration.

3. GENERAL STOCHASTIC APPROACH TO SOLVING
THE FOCUSED TRANSPORT EQUATION

Zhang (1999, 2000) proposed a stochastic approach with
backward SDEs to solving the initial or boundary-value problem
of the Fokker–Planck diffusion equation. This method has
frequently been applied to the study of modulation of GCR
(Zhang 1999; Ball et al. 2005; Luo et al. 2011) and SEP
transportation in the heliosphere (Qin et al. 2005; Zhang et al.
2009; He & Qin 2011). Zhang (2000) also summarized how to
apply this method to dealing with the shock acceleration from
a theoretical perspective. To solve the source injection problem
of the Fokker–Planck diffusion equation, it is more convenient
to apply the stochastic approach with forward SDEs. Below, we
briefly discuss its fundamentals.

The Fokker–Planck equation can be expressed in a general
form (Gardiner 1983) as follows:

∂P (t, q)

∂t
= 1

2

∑
μ,ν

∂2

∂qμqν
GμνP (t, q)

−
∑

μ

∂

∂qμ
KμP (t, q) + Q(t, q), (6)

where G is an n×n diffusion tensor, which is related to an n-
dimensional vector B by

G =
∑

μ

Bμ(t, q)BT
μ (t, q). (7)

K is an n-dimensional vector and the term Q(t, q) represents
the injection rate of source particles.

As is well known, this diffusion equation is mathematically
equivalent to the system of its forward SDEs:

dq = K(t, q)dt + B(t, q)dW(t), (8)

where W(t) is an n-variable Wiener process. This equation
describes the stochastic process of particles in the phase space.
Once one particle is injected at t = t0 with the coordinate,
q = q0 in the phase space. The stochastic trajectory of the
particle can be determined by numerically integrating the SDEs.
To get the distribution function f (t, q), i.e., the probability
density function, a considerable number of test particles are
injected in terms of source injection rate Q(t, q), and their

stochastic trajectories are simulated. f (t, q) is finally calculated
by statistically determining the particle density in the space
phase. Due to the equivalence of these two sets of equations,
f (t, q) is exactly the solution of the Fokker–Planck equation.
As indicated by Krülls & Achterberg (1994), there is no
approximation for computing the Fokker–Planck equation using
the SDE method. It is one of the advantages compared with other
numerical methods.

Now let us return to the FTE. It describes the evolution
of distribution function f (X, p, μ) in five-dimensional space
(X, p, μ). It is related to particle energy differential flux or
energy spectrum j (X, p, μ), which is defined as the number
density of particles in phase space element dXdpdμ:

j (X, p, μ) = 4πp2f (X, p, μ). (9)

The equation governing the evolution of j (X, p, μ) can be
written in terms of Equations (2)–(5) as

∂j
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∂2
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j

]
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∂Dμμ
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+
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)
j

− ∂

∂p
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1
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∂
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(p2Dpp) +
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]
j + Qs. (10)

Here see Equations (3)–(5) for the expression of dX/dt , dp/dt ,
and dμ/dt . The conservation equation is a natural consequence
of the conservation of the phase space element.

Rewriting Equation (10) to the above standard Fokker–Planck
equation form, we get
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−
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. (13)

The corresponding forward SDEs are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
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The stochastic approach has many special advantages in
application to solving the Fokker–Planck equations numerically.
It is more efficient when applied to high-dimensional problems
because merely adding a few lines of code is needed to
extend one dimension (Zhang 1999). Furthermore, to make a
Monte Carlo simulation of SDEs, it is much easier to realize
parallel computation even without communication between
the computer processors. As will be shown below, the SDE
method is especially capable of revealing insights into the
physical processes behind the solution to the Fokker–Planck
equation since they follow the trajectory and the momentum
of individual particles. Owing to such great advantages, the
stochastic approach is widely applied to solving the transport
problem in cosmic-ray community. This study marks the first
time the forward SDE method has been applied to simulate the
focused transport process in shock acceleration.

4. MODEL DESCRIPTION

As a first step, we investigate the pickup proton acceleration
at the termination shock to reveal the fundamental properties of
shock acceleration using the FTE. Pickup ions originate from the
ionization of the penetrated interstellar neutral atoms and dis-
tribute everywhere from near the sun to the termination shock.
As they propagate along with the solar wind to the termination
shock, they may undergo second-order Fermi acceleration so
that their distribution evolves as the result of diffusion in en-
ergy as well as adiabatic cooling. At the termination shock the
pickup ions will undergo major acceleration, which will dra-
matically change their energy spectrum. After the termination
shock, the spectrum may continue to evolve due to the second-
order Fermi acceleration in the turbulent heliosheath. Here we
do not plan to calculate the global accelerated pickup ion distri-
bution spectrum. We merely discuss the acceleration of newly
born pickup protons near the termination shock. As we know,
these particles tend to form an isotropic spherical distribution in
the ambient solar wind frame due to scattering by the ambient
Alfvénic waves. Accordingly, mono-energetic (in approxima-
tion) protons are continuously and isotropically injected at the
vicinity of the termination shock for acceleration. In this study,
the acceleration process of such particles by the termination
shock is simulated.

For simplicity, we treat the termination shock as a one-
dimensional planar shock. We define the X-axis, which denotes
the unique spatial coordinates, along the shock normal from
downstream to upstream, and the coplanar plane of the plasma
flow and magnetic fields as the x–y plane. The plasma flow is
normally incident, i.e., in the reverse X-direction (U = uex).
Across the shock, the plasma flow is decelerated due to the
compression, and the decreased kinetic energy is converted to
heat the plasma flow. Here we model compressional flow in
the thin ramp transition with a thickness of approximate ion
inertia length. The ramp is managed from MHD calculation
with balance of momentum flux. The magnetic field profile in
the ramp can easily be computed in the tangential electric filed
continuity rule (uxBy = constant) in accordance with Maxwell
equations. The cosine value of the angle between the magnetic
field and the shock normal (cos ψ = b · n), which determines
the direction of the magnetic field in the one-dimensional case,
is formulated as

cos ψ = cos θBn√
cos2 θBn +

(u1

u

)2
sin2 θBn

, (15)

where θBn is the angle between the upstream magnetic field and
the shock normal that indicates the shock obliquity, u1 is the
upstream plasma flow speed, and u is the plasma flow speed.

As discussed in Section 2, the stochastic acceleration and the
perpendicular diffusion are neglected in the shock acceleration.
The drift convection term Vd is also not considered in the one-
dimensional approximation. So the FTE for energy spectrum
density is reduced as

∂j

∂t
=

[
∂2

∂μ2
Dμμ − ∂

∂x
(u + vμ cos ψ) − ∂

∂p

(
dp

dt

)

− ∂

∂μ

(
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+
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j + Q(x, p,μ) (16)

dp

dt
= − p

du

dx

(
1 − μ2

2
sin2 ψ + μ2 cos2 ψ +

μu

v
cos ψ

)
+ μqE cos ψ (17)

dμ

dt
= 1 − μ2

2

du

dx

(
v

u
sin2 ψ cos ψ + μ(1 − 3 cos2 ψ)

− 2
u

v
cos ψ

)
+

(1 − μ2)qE cos ψ

p
. (18)

This transport equation is a three-dimensional parabolic differ-
ential equation (one spatial coordinate for planar shock, mo-
mentum, and pitch angle). The corresponding set of forward
SDEs is given as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx = (u + vμ cos ψ)dt

dp = dp

dt
dt

dμ = √
2Dμμdω(t) +

(
∂Dμμ

∂μ
+

dμ

dt

)
dt.

(19)

In Equations (16)–(19), u is the velocity of plasma flow, du/dx
is the divergence of the convergent flow, v is the particle
speed, and E is the parallel electric field in the plasma frame
that may arise from a potential increase. The focused length
LB = −(∇ · b)−1 = −(u/sin2 ψ cos ψ)(du/dx)−1. Note that
the spatial coordinates and the time are measured in the normal
incident shock frame, while the momentum, particle speed, and
pitch angle are measured in the frame that moves along the
plasma flow with non-constant velocity U. The source term in
Equation (16) is given by

Q(x, p,μ) = Q0δ(p − p0)δ(x), (20)

where Q0 is the injection rate of pickup protons convecting into
the termination shock. Here we put the termination shock at
X = 0. The source in Equation (20) means that the particles are
injected mono-energetically and isotropically at the shock.

We use the solar wind Parker model for the upstream
environment of the termination shock including the magnitude
of the magnetic field B1, the flow speed u1, and the solar wind
number density n1:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
B1 = BE

( rE

r

)2
√

1 +

(
r sin θΩs

u1

)2

u1 = uE

n1 = nE

( rE

r

)2
,

(21)
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where the subscript “E” denotes the values at 1 AU, θ is the polar
angle, and Ωs is the angular speed of the solar rotation. If the
compression ratio s and the shock obliquity θBn are known, the
corresponding downstream parameters can easily be obtained
following the standard Rankine–Hugoniot relations⎧⎪⎨

⎪⎩
n2

n1
= u1

u2
= s

B2

B1
=

√
cos θ2

Bn + s2 sin2 θBn .

(22)

In this simulation, we assume that the termination shock is in the
solar equatorial plane θ = 90◦ with radial distance r = 94 AU
so that the normal of the termination shock is in the radial
direction. The magnetic field and the plasma parameters at 1 AU
are taken as the typical values BE = 5 nT, uE = 400 km s−1,
and nE = 8 cm−3. In accordance with the Parker model, the
angle between the shock normal and the magnetic field direction
θBn should be 89.◦4. In actual Voyager 1 observations, the
upstream magnetic field near the termination shock varies with
the time in a broad range. The average magnetic field direction
is nearly perpendicular to the radial direction, as predicted by
the Parker model. But in a fraction of time, the angle between
the magnetic field and the radial direction is less than 60◦ and
is sometimes even zero. Considering the termination shock
configuration change, all kinds of shocks—parallel, oblique,
and quasi-perpendicular shocks—may account for the shock
acceleration. In this model we do not intend to take into account
the role of time variation of the magnetic field in the particle
motion. In each simulation, θBn is fixed. Different obliquities are
designed to study different kinds of shock accelerations (parallel
shock, oblique shock, quasi-perpendicular shock, etc.).

For the pitch angle diffusion coefficient Dμμ we follow
the form that was used in the work of le Roux et al. (2007)
and le Roux & Webb (2009). Likewise, we do not aim at a
complete self-consistent solution of wave–particle interaction.
The expression of Dμμ is given as

Dμμ = D0

[(
1

1 + ε

) (
1 − μVA

v

) |vμ − VA|2/3

|vμ − VA|5/3 + (Ωlb)5/3

]

+ D0

[( ε

1 + ε

) (
1 +

μVA

v

) |vμ + VA|2/3

|vμ + VA|5/3 + (Ωlb)5/3

]
(23)

with D0 = π/8A2Ω2lb(1 − μ2). Here the parameters VA, ε, Ω,
lb, and A2 are the Alfvén speed, the relative ratio of backward
and forward propagating Alfvén waves, the gyrofrequency of
particles, the correlation length, and the wave energy density of
magnetic field fluctuation, respectively. For more details, please
see the papers of le Roux et al. (2007) and le Roux & Webb
(2009).

Our Monte Carlo simulation using the forward SDEs uses
the following procedure to calculate the distribution function
f (x, p,μ) = j (x, p,μ)/4πp2. First, the protons are injected
at X = 0 continuously from t = 0 to the time t = tmax. Since
the velocity distribution of the injected particles is considered
to be isotropic, the associated pitch angle cosine (μ) is selected
as a random number from a uniform distribution in the range
of [−1,1]. Then SDEs are solved to get the trajectory of each
particle from injection at t = t0 to the ending time t = tmax. The
SDEs are like the first-order ordinary differential equation set
that can easily be solved using the Runge–Kutta finite-difference

algorithm. The end status (xe, pe, μe) of each particle is recorded.
Additionally, a free escape boundary is set in the upstream and
downstream regions. When the particle reaches the free escape
boundary, the calculation for the particle motion is ended and
the particle is thrown away. We put the escape free boundary
several diffusive lengths ldiff = κxx/u, where κxx ≈ κ‖ cos2 θBn

is the diffusion coefficient. The parallel diffusion coefficient is
expressed as

κ‖ = v2

8

∫ 1

−1
dμ

(1 − μ2)2

Dμμ

. (24)

Finally, the probability of the particle distribution, which is
equivalent to the solution of Equations (16)–(18) for the source
injection problem, can be constructed by calculating the number
density of particles in the phase space cell ΔXΔpΔμ.

5. THEORETICAL SOLUTION FOR THE
ONE-DIMENSIONAL PARKER TRANSPORT EQUATION

AND MODEL TEST

Here we briefly review the solution of the one-dimensional
Parker transport equation. In the shock frame, the equation is
written as

∂j

∂t
= ∂

∂x

(
κ

∂

∂x
j

)
− ∂

∂x
(Uj ) +

∂

∂p

(
1

3

∂U

∂x
pj

)
+ Q(p, x, t).

(25)
Similarly, the convection drift and the momentum diffusion are
not considered here. For a one-dimensional planar shock, all
quantities depend spatially on x, and the flow speed is steady
and constant except across the shock: u = u1 for x � 0, u = u2
for x > 0, and u1 > u2. The diffusion coefficient is assumed
to be independent of the momentum p: κ = κ1 for x � 0
and κ = κ2 for x > 0. Q(x, p, t) is the source term with the
same format as that taken in the anisotropic shock acceleration
model: Q(x, p, t) = Q0δ(p − p0)δ(x). We select such a
simple plasma circumstance because it is then easy to gain the
analytical solution for one hand. Most importantly, the solution
can basically reveal fundamental features of standard DSA
theory such as the acceleration power-law energy spectrum, the
intensity distribution in the upstream and downstream regions,
etc.

The analytical steady-state solution (∂/∂t = 0) of
Equation (25) for distribution function f = j/4πp2 can easily
be solved as

f =
{
f0p

−γ e−u1|x|κ1 x < 0
f0p

−γ x � 0,
(26)

where

f0 = γQ0

4πu1p
3
0

. (27)

Here, Q0 is the injection rate, p0 is the injected energy value, and
γ is the spectral index that merely depends on the compression
ratio s = u1/u2 with the expression

γ = 3s/(s − 1). (28)

Note that, to get this solution, there is a basic assumption that the
particle number density and the number of particles streaming
at each momentum are continuous across the shock, which is
usually satisfied for isotropic high-energy particles.

The solution indicates that the acceleration energy spectrum
inferred from the standard DSA theory is a power-law spectrum
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Figure 1. Downstream energy spectrum of energetic particles accelerated by shock in the DSA framework: (a) for the case with the injection particle speed u0 =
400 km s−1 and (b) for the case with u0 = 3455 km s−1. The dashed line shows the analytical solution of the Parker transport equation. The solid and dotted lines
represent the simulation results using the forward SDE approach.

(A color version of this figure is available in the online journal.)

f = f0p
−γ with the spectral index dependent only on the

compression ratio. Another feature is that the intensity increases
exponentially in the upstream region and is constant in the
downstream. There is no jump across the shock.

As a benchmark test, we apply the forward SDE method to
solve the one-dimensional Parker transport equation so as to
calculate the energy spectrum distribution in the framework of
DSA. The forward SDE sets corresponding to Equation (25) are⎧⎪⎪⎨

⎪⎪⎩
dx = √

2κdω +

(
∂κ

∂x
+ U

)
dt

dp = −1

3
p

∂U

∂x
dt.

(29)

Two test simulations with different injection particle momen-
tums p0 are conducted. The shock compression ratio is given as
s = 3.7 and the upstream solar wind speed as VSW = 400 km s−1

in both cases. Figure 1 shows the accelerated energy spectrum
distribution in the downstream of the shock for the two cases.
One is for the injection with a particle speed of u0 = 400 km s−1

(see Figure 1(a)), and the other is for u0 = 3455 km s−1 (see
Figure 1(b)). The black dashed line is plotted in terms of the
steady-state analytical solution (Equation (26)). The solid and
dotted lines are the numerical simulation based on our model
up to time Tmax. The distribution function f(p) is normalized by
setting Q0 = 1. Clearly, as seen in Figure 1(a), there is good
agreement between the numerical and analytical results. For the
other case presented in Figure 1(b), the simulation results also
match well with the analytical solution except that there is a
spectrum rollover due to setting the finite acceleration time Tmax
to deal with the time-dependent problem that is usually adopted
in the simulation. If we select a larger Tmax, the start point
of the spectral rollover becomes higher, i.e., the rollover shifts
to the higher energy. The red solid and green dotted lines present
the results for two Tmax settings. The solid line corresponds to
a larger Tmax. We can see that the start point of the spectral
rollover shifts from p/p0 ∼ 32 to p/p0 ∼ 42. At the momenta
below the start point of the spectral rollover, the simulation is
well consistent with the analytical solution. To get an accurate
solution in the concerned energy range, the appropriate acceler-
ation time Tmax should be chosen in the simulation. The success
of the tests confirms the applicability of the model based on the
stochastic approach and proves its accuracy.

6. SIMULATION RESULTS

In this section, we present the simulation results based
on our anisotropic shock acceleration model with a focus

on the principal features of the accelerated energy spectrum
distribution. We discuss three types of shocks with the same
shock parameter settings except the shock obliquity θBn: parallel
shock (θBn = 0◦), oblique shock (θBn = 45◦), and quasi-
perpendicular shock (θBn = 80◦). In all the simulations, the
shock compression ratio is selected to be s = 3.7 and the
upstream plasma speed is taken to be u1 = 400 km s−1. The
correlation length lb and wave energy parameter are simply
kept constant as lb = 0.025 AU and A2 = 0.2. These
parameters are selected to consider a moderate pitch angle
scattering near the termination shock. In this paper, the shock-
surfing acceleration mechanism due to the effect of cross-shock
electrostatic potential is not considered, i.e., we set the parallel
electric field to be zero (E = 0 in Equations (17) and (18)).

It can be inferred from Equations (17) and (18) that, for
energetic particles moving in the steady solar wind environment
upstream and downstream of the termination shock, they are
only scattered by the magnetic turbulence and waves through
the pitch angle diffusion and do not gain or lose any energy
adiabatically since there is no convergent flow (du/dx = 0) and
the momentum diffusion is not considered. Once they cross the
shock, however, they experience abrupt changes both in energy
and pitch angle due to the drift acceleration, flow compression,
adiabatic focusing, pitch angle scattering, etc. When one particle
is injected near the shock, it has three possible fates as a
first step in the interaction with the shock, depending on its
speed and the pitch angle of injection (Decker 1988; Chalov &
Fahr 2000): transmitted downstream, reflected to upstream, or
moved with no interaction with the shock. Those reflected and
non-interaction particles moving upstream from the shock will
return to the shock through pitch angle diffusion. Some of them
probably can undergo second or multiple encounters with the
shock. Similarly, some of the particles in the downstream can
also return to the shock for possible energy gain in consecutive
shock encounters. In a weak scattering condition, a considerable
portion of downstream particles transmitted from upstream
cannot change its pitch angle quickly enough to return to the
shock, so they simply move downstream and eventually escape.
Considering a continuous particle injection, all of these one and
multiple shock-crossing particles can be detected and contribute
to the energy spectrum distribution.

As far as we know, there have been three numerical models
to investigate the pickup ion acceleration in the local area of
the termination shock in the framework of anisotropic shock
acceleration (also called focused transport acceleration in some
literature), namely, the le Roux model (le Roux et al. 2007;
le Roux & Webb 2009), the Florinski model (Florinski et al.
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Figure 2. (a) Energy spectrum of energetic particles in the downstream of a parallel shock accelerated in the framework of anisotropic shock acceleration (see the
solid line). The red dashed line is the fitted power-law spectrum in the corresponding energy range. For comparison, the analytical solution of the Parker transport
equation is also shown (see the dash-dotted line). (b) Particle momentum and pitch angle change vs. the injection particle pitch angle when the particles are injected
and interact with the shock transition for the first time.

(A color version of this figure is available in the online journal.)

2008a, 2008b; Florinski 2009), and the Chalov model (Chalov
& Fahr 2000). In Chalov’s model, the pickup ion’s trajectory in
the upstream or in the downstream is calculated by the SDEs
corresponding to FTE, and when the particles interact with
a shock, the energy and pitch angle changes are determined
in terms of adiabatic test particle theory (Webb et al. 1983).
Although the stochastic method is applied, the Chalov model is
much different from our current model, in which the acceleration
process in the shock ramp is also directly governed by the
stochastic different equations. All three models are able to
calculate the accelerated energy spectrum that is proved to have
two components: one is the low-energy component, which is due
to the first transmitted particles and/or the two shock-encounter
particles, and the other is the high-energy component, which is
due to the multiple shock-encounter particles (Chalov & Fahr
2000, le Roux et al. 2007). Below we present our modeling
results regarding the acceleration energy spectra. Comparison
with previous studies is also discussed.

6.1. Parallel Shock

Figure 2(a) shows the accelerated energy spectrum distribu-
tion downstream of a parallel shock (θBn = 0◦). The dash-dotted
line is the analytical solution of the one-dimensional Parker
transport equation (Equation (26)), and the solid line is our sim-
ulation result using FTE. The distribution function is normalized
by setting Q0 = 1 (similarly hereinafter). Here we inject parti-
cles continuously and isotropically upstream of the shock, with
the particle speed the same as the upstream solar wind speed,
i.e., vinj = u1 = 400 km s−1. The spectrum can be roughly
divided into two parts, excepting a spectrum rollover at high
energies that is caused by limited acceleration time as indicated
in the model test in Section 5. Between 0.27 < p/p0 < 3.1, the
spectrum is complicated but contains most of the injected par-
ticles. At the higher energy part between 3.1 � p/p0 � 16.8,
it is characterized by a power-law distribution (see the region
bounded by two vertical lines labeled by p1 and p2, respec-
tively). Figure 2(b) presents the particle momentum and pitch
angle change versus the injection particle pitch angle when the
particles are injected and interact with the shock transition for
the first time based on the FTE. In our model, the magnetic field
is set in the upstream direction, so a particle with μ0 = −1
means that it moves along the shock normal to downstream. For

a parallel shock, the magnetic field is constant across the shock
ramp, so the particles injected with a speed equal to the upstream
solar wind speed will not be reflected, that is, transmitted down-
stream. It can be seen from Figure 2(b) that the downstream
pitch angle μ and the momentum p change smoothly with the
injection pitch angle μ0. Within one interaction with the shock,
those injected particles with μ0 > 0 suffer energy loss with a
maximum loss to pmin = 0.27p0. Those with μ0 < 0 gain en-
ergy with a maximum boosting to pmax = 1.7 p0. The momentum
of the transmitted particles in the downstream after crossing a
parallel shock can also be estimated by the equation analyzed
in the paper of le Roux et al. (2007):

p/p0 =
√

1 +
( s

s + 1

)2
+ 2μ0

( s

s + 1

)
. (30)

The energy range of the transmitted particles estimated by the
above equation is [0.27 p0∼1.7 p0]. In this energy range, the
spectrum is roughly a hard power-law distribution that ends
at a momentum of p = 1.7 p0. This part of the spectrum
is made up by the initially transmitted particles. The lower
energy cut-off momentum is right at the minimum momen-
tum of the transmitted particles (see the vertical line labeled
as “pcut”). There is a sharp decrease at p = 1.7 p0 followed by
a small bump in a narrow energy band until p = 3.1 p0. This
part of the spectrum is made up by those scattered by the down-
stream turbulence back to encounter the shock another time. As
analyzed by le Roux et al. (2007), the decrease and the bump
in the narrow energy range are formed due to these particles.
Some of the transmitted particles are eventually able to cross the
shock multiple times. These particles contribute to a power-law
distribution spectrum between 3.1 < p/p0 < 16.8. The line
fitting to the spectrum in this range (the red dashed line) is par-
allel to the DSA spectrum line (the dash-dotted line). The slope
of the fitting spectrum calculated is γfit = 4.11 ± 0.01, which
is the same as the theoretical prediction of standard DSA, i.e.,
γDSA = 3s/(s + 1) = 4.11 for a compression ratio s = 3.7. This
is consistent with the result for parallel shock acceleration in le
Roux et al. (2007), in which they pointed out that, as long as
particles can have multiple shock encounters, the DSA theory
still holds even if the anisotropy is not small.

Usually, the acceleration efficiency by the shock is repre-
sented by the flux of accelerated energy particles at certain
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Figure 3. (a) Energy spectrum of energetic particles downstream of the oblique shock with obliquity θBn = 45◦ accelerated in the framework of anisotropic shock
acceleration with the same format as that in Figure 2(a). (b) Particle momentum and pitch angle change vs. the injection particle pitch angle when the particles are
injected and interact with the shock transition for the first time. The solid line shows the particles transmitted downstream and the dash-dotted line is for the particles
reflected by shock. (c) Distribution function pγ f (p) with high resolution in the energy range where the accelerated energy spectrum is a double power-law spectrum.
(d) Upstream pitch angle distributions f (μ) of the energetic particles at certain energies. f (μ) is normalized by its maximum.

(A color version of this figure is available in the online journal.)

momentum j (p) = 4πp2f (p) relative to the number density
n = ∫ ∞

0 j (p)dp, that is, j (p)/n. As seen in Figure 2(a), the
simulated intensity of the power-law distribution at higher en-
ergies is smaller compared with the solution of standard DSA
theory. That means less particles are able to accelerate to high
energy. We can therefore conclude that, for a parallel shock, the
efficiency to accelerate to the standard DSA regime at higher
energies is less than 1. Here we define the injection efficiency
η as the ratio of the acceleration particle flux at the power-law
energies obtained by the anisotropic shock acceleration to the
flux from the DSA. Since the power-law slope is the same, η
should be equal to the ratio of energy spectrum intensity, i.e.,
η = f (p)/fDSA(p). At this parallel shock, for injected pickup
ions with a speed equal to the solar wind speed, the injection
efficiency is calculated as η = 0.67.

6.2. Oblique Shock

Figure 3(a) presents the downstream accelerated energy
spectrum for an oblique shock with obliquity θBn = 45◦, as
well as the momentum of the injection pickup ions p0 = mu1.
At the energies p/p0 < 7.3, the energy spectrum is more
complicated. In this range the spectrum appears to be broken
into several pieces separated by empty gaps. At momentum
p < p0 corresponding to particle energy loss, similar to that
in the parallel shock, the spectrum first increases and then
resembles a hard power-law distribution, and there is low-energy
cutoff at p ∼ 0.6 p0. Following this, there are two spectral gaps
and two peak structures in the spectrum at momenta p > p0.

The distribution gap means no particles fall into this energy
range. It can be proved that the spectrum at the energies below
p � 1.9p0 is formed by particles that interacted with the
shock once. Across a fast oblique shock, the magnetic field
is kinked, with the field direction changed and the magnitude
enhanced. One particle across the shock undergoes gradient drift
and curvature drift, which results in the particle energy gain
or loss by the motional electric field. Figure 3(b) records the
momentum and pitch angle change when the particles interact
with the shock ramp for the first time after injection. After
the new-born pickup ions with a speed equal to the upstream
solar wind have been injected, some of them are transmitted
through the shock ramp downstream, and the rest are reflected
to return upstream due to the magnetic field kink that makes the
acceleration process different from that in the parallel shock.
The mappings of pitch angle and momentum for these two
kinds of particles are, respectively, shown as the solid line and
the dash-dotted line in Figure 3(b). The particles with pitch angle
0.12 < μ0 < 0.93 are reflected with an enhanced momentum.
The gained momentum is distributed between pmin = 1.9 p0 and
pmax = 2.9 p0. Note that, after particles are reflected, the particle
pitch angle is roughly along the magnetic field in the upstream
direction (μ = 0.93 ∼ 0.98), which will directly result in a
highly anisotropic beam in the upstream region. Some of the
particles transmitted downstream through the shock ramp lose
energy in the downstream solar wind frame with a minimum
momentum 0.6 p0, and a significant portion of the transmitted
particles gain energy with the maximum momentum 1.9 p0.
As a whole, the energy gain of the transmitted particles is less
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Table 1
The Fitted First-order and Second-order Anisotropy of Energetic Particles in the Upstream of the Shock at Nine Energies

E 6 keV 10 keV 20 keV 50 keV 100 keV 200 keV 500 keV 1000 keV 3500 keV

p/p0 2.6 3.4 4.8 7.6 10.8 15.2 24.1 34.1 63.8
ξ1 1.48 1.25 0.88 0.55 0.37 0.29 0.18 0.14 0.12
ξ2 0.50 0.25 0.06 0.001 −0.01 −0.01 −0.02 −0.01 0.0004

than that of the reflected particles, which is consistent with the
shock-drift theory (Webb et al. 1983). The energy range of the
particles interacting with the shock for the first time (reflected
or transmitted) is [0.6–1.02] ∪ [1.39–1.9] p0. No particle falls
into the narrow energy range [1.02–1.39] p0. This corresponds
to the first distribution gap. Additionally, the low-energy cutoff
is pcut = 0.6p0, that is, right at the minimum momentum of
the particles transmitted downstream for the first time. After the
first interaction with the shock ramp, a portion of the reflected
particles will be scattered back by turbulence. They return to
the shock and undergo another energy gain or loss. The energy
differences between the first and second shock interactions form
a second spectral gap between 2.1 < p/p0 < 2.4.

We wish to emphasize the energy spectrum at high energies.
Similar to the parallel shock, the spectrum at the high energies
is contributed by the particles having gone through multiple
shock encounters. As shown in Figure 3(a), the spectrum can be
approximated by a double power-law spectrum at the momenta
between p1 = 7.3p0 < p < p3 = 46p0 (see the region
bounded by two vertical lines labeled as “p1” and “p3”). For
comparison, the analytical solution of DSA from the one-
dimensional Parker equation is also plotted as a dash-dotted
line. To show this double power-law spectrum more clearly,
we plot the distribution function pγ f (p) in the energy range
p1 < p < p3 in Figure 3(c) separately. Here, γ is the spectral
index of the standard DSA with value γ = 3s/(s−1) = 4.11 for
a compression ratio s = 3.7. It can be seen that the first power-
law spectrum between p1 and p2 = 17.7p0 is a little harder than
the standard DSA spectrum. The corresponding fitting slope
of the spectrum is γ1 = 3.87 ± 0.01. This result is in agreement
with the work of le Roux et al. (2007), where it is also a
harder power-law spectrum for 6 < v/u1 < 10 with fitting
index γ ∼ 3.9 for oblique shock acceleration (the same given
compression ratio). Their simulation, however, did not give the
real spectrum at higher energies due to a low spectral rollover.
Here we extend the calculation to the higher energy until
p = p3 = 46p0 where the spectral rollover starts. The fitting
line between p2 and p3 with the second power-law spectrum
is exactly parallel to the dash-dotted line. The slope difference
between the two fitting power-law spectra is much more evident
in Figure 3(c). The corresponding fitted spectral index for the
second power law is γ2 = 4.11 ± 0.01. It implies that, in this
energy range, the particles have gone into the DSA regime. It can
be seen that the double power-law spectrum line is far above the
spectrum line given by standard diffusive acceleration theory. It
indicated that more particles can cross the shock multiple times
so that they are accelerated to high energies. The acceleration
efficiency is improved. In the energy interval p2 < p < p3, the
injection efficiency η defined above is 2.57, which far exceeds 1.

From the microscopic viewpoint of the diffusion acceleration
theory, the average momentum change of particles for each
shock crossing plays a decisive role in determining the spectrum
slope at certain momentum, which depends on the particle
acceleration rate, i.e., 〈1/pdp/dt〉 averaged over all pitch

angles (see the review of Drury 1983). For an isotropic PAD,
〈1/pdp/dt〉 = −(1/3)du/dx, which is independent of the
particle momentum so that the power-law distribution with
spectral index γ = 3s/(s − 1) is generated. Now we consider
the case in which the pitch angle distribution f (μ) is anisotropic
at any momentum p. For simplicity of discussion, let us expand
it as a sum of Legendre polynomials to the second order:

f (μ) = ξ0[P0(μ) + ξ1P1(μ) + ξ2P2(μ)], (31)

where Pi(μ) is the i-order Legendre polynomial and ξi is defined
as the i-order anisotropy coefficient (i = 0, 1, 2). So the average
particle acceleration rate in the shock ramp can be derived as

〈
1

p

dp

dt

〉
=

∫ 1
−1 f (μ) 1

p

dp

dt
dμ∫ 1

−1 f (μ) dμ

= −1

3

du

dx

[
1 +

u

v
cos ψξ1 + (0.6 cos2 ψ − 0.2)ξ2

]
.

(32)

Here the original acceleration rate is given by Equation (17).
At high energies where particle velocity is much greater than
the solar wind speed, i.e., v/u � 1, the effect of the first-order
anisotropy ξ1 can be reasonably neglected so that the average
acceleration rate only depends on the second-order anisotropy
ξ2. For the high-energy particles, the second-order anisotropy
becomes important to the determination of the spectrum slope.
When ξ2 is small in a high-energy range, the average acceleration
rate is reduced to the same form as that from the isotropic
condition, so that a power-law spectral index in this energy
range only depends on the compression ratio. In this sense, the
particle acceleration has gone into the standard DSA regime,
although the particles are not isotropic.

To calculate the PAD at certain momentum so as to determine
the anisotropy coefficients, one should record the pitch angle
information for all of the particles that are able to accelerate to
reach this momentum at the arrival time in the shock transition
where the particle energy changes take place. According to the
simulation results of le Roux et al. (2007) and Florinski et al.
(2008a, 2008b), the particles are isotropic in the downstream,
and mostly anisotropic in the upstream. There are few particles
in the upstream region at any time, so to estimate the anisotropy
at certain momentum, we approximate the PAD at some energies
by statistically counting all the particles in the upstream region
and expanding the PAD in Legendre polynomials. This allows
us to roughly estimate the anisotropy feature. Figure 3(d) gives
the PAD of all upstream particles at nine energy points. The
corresponding first- and second-order anisotropy coefficients
are listed in Table 1. It is evident that the upstream particles
are strongly anisotropic, even at the energy of ∼1 MeV. The
first-order, and most dominant anisotropy, decreases with the
increasing energy. This feature is also obtained in the work of le
Roux et al. (2007). As discussed above, the particles reflected
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Figure 4. Downstream energy spectrum of energetic particles accelerated by
shock with obliquity θBn = 45◦ for three cases where the seed pickup ions are
injected with pitch angles μinj = 0, 0.5, and −0.5, respectively.

(A color version of this figure is available in the online journal.)

upstream by the shock for the first time form a beam almost along
the magnetic field in the upstream region (see Figure 3(b)), so it
is the most anisotropic in the energy range of reflected particles
(1.9 < p/p0 < 2.9). For the particles experiencing multiple
shock crossings, although the first-order anisotropy is still not
small, the second-order anisotropy decreases much more rapidly
(less than 0.05, see the ξ2 at E � 50 KeV). At E = 3.5 MeV, the
second-order anisotropy is very close to zero. We note that the
above anisotropy analysis is an approximation since in the entire
upstream the statistics is very poor. Nevertheless, it qualitatively
gives the anisotropy change with the particle energy. At the
energies of the power-law spectrum, the second anisotropy is
evidently small enough, although the first anisotropy is still
large. The formation of the double power-law distribution can
be explained based on the second-order anisotropy. At higher
energies corresponding to the second power-law spectrum,
because the second anisotropy is nearly zero, the spectral index
is not different from that of the standard diffusive acceleration.
Note that the particle speed is already far larger than the solar
wind speed. At lower energies corresponding to the first power-
law spectrum, because the second-order anisotropy is small but
not zero and keeps roughly constant, the spectrum slope at
each momentum in this energy range is slightly smaller than
the predicted spectral index of standard DSA. Therefore, the
spectrum line can be fitted with a harder power-law distribution
spectrum.

After the seed particles have been injected upstream of the
shock, they are selectively reflected or transmitted downstream
according to their pitch angle. This results in an anisotropic
distribution for these first shock encounter particles. When
they continue to cross the shock back and forth consecutively,
however, motion in the upstream and downstream makes the
particles more and more isotropic by pitch angle scattering (see
the pitch angle diffusion term in Equation (18)). Eventually, at
certain higher energy, the second-order anisotropy becomes very
small, so that the DSA mechanism plays the major role. This
process is developed whether the seed particle is isotropic or
anisotropic. To verify this point, we conduct test simulations by
injecting the new-born pickup ions with mono-pitch-angle rather
than isotropically. Figure 4 presents the downstream energy
spectrum distribution for three cases with the injection pitch
angles of 0, 0.5, and −0.5, which are shown in the dotted line,

Table 2
The Fitted Spectral Indexes of the Double Power-Law Spectrum

Injection γ1 (p1 ∼ p2) γ2 (p2 ∼ p∗
3 )

μ0 = 0 3.87 ± 0.02 4.09 ± 0.02
μ0 = 0.5 3.86 ± 0.03 4.10 ± 0.03
μ0 = −0.5 3.85 ± 0.02 4.12 ± 0.02
Isotropic injection 3.87 ± 0.01 4.11 ± 0.01

Notes. γ1 is fitted between p1 < p < p2 and γ2 is fitted between p2 < p < p∗
3 .

See the text for the values of p1, p2, and p∗
3 .

the dashed line, and the dash-dotted line, respectively. The solid
line is plotted in terms of standard DSA theory. It is clearly seen
that in the momentum between p = p1 and p = p∗

3 = 40p0, the
spectra are similar to a double power-law spectrum with the joint
at p = p2 for each case. Here p∗

3 , not p3, is selected because at
the momentum p∗

3 , the spectrum starts to roll over for the case
μ0 = 0.5. The segmental fitting indexes for the three spectra
are listed in Table 2. The fitting indexes for the three cases are
in agreement with the case with isotropic injection discussed
above. This indicates that the particle anisotropy at a certain
momentum larger than p1 is independent of the pitch angle of
the initial injection particles. The main difference between the
three spectra at high energies is that the injection efficiency
is not the same. The acceleration efficiency is relevant to the
probability of returning to the shock for multiple encounters,
which is seriously dependent on the particle pitch angle in the
given scattering circumstance. With a different injection particle
pitch angle, the proportion of the particles able to gain multiple
shock crossing is different, resulting in the different injection
efficiency. A big difference can be seen in the low-energy part
of the energy spectrum for the three cases and the case with
isotropic injection. This is easy to understand since this part
is contributed by the particles transmitted through or reflected
by the shock for the first time. For these particles, the energy
gain or loss is sensitive to the injection particle pitch angle (see
the mapping plot). Their intensity and energy distribution range
also depend on the initial injection momentum and the pitch
angle. If we inject the particles with pitch angle μ0 = 1, all of
the particles are just transmitted downstream with energy loss
(see the mapping plot in Figure 3(b)), and they cannot return to
the shock for another shock encounter due to the low speed. In
addition, our spectra at the low-energy part are very different
from those given by le Roux et al.’s simulation for both the
parallel shock and the oblique shock (see Figures 1(a) and 6(a),
respectively, in le Roux et al. 2007). This is due to the different
injection spectrum. In le Roux et al.’s (2007) simulation,
they injected particles in the whole upstream region. When
particles move from the injection location to the termination
shock, their momenta are expected to decrease due to adiabatic
cooling in their model, so the seed particles injected for
shock acceleration are no longer mono-energetic, but include
a considerable number of particles with speeds lower than the
upstream solar wind speed. That is why we cannot see a low-
energy cutoff above p/p0 = 0.1 in their simulation.

6.3. Quasi-Perpendicular Shock

We now consider the anisotropic acceleration by a quasi-
perpendicular shock with an obliquity of θBn = 80◦. For a highly
oblique shock, once transmitted upstream to downstream, the
particles cannot easily return to the shock since the magnetic
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Figure 5. (a) Energy spectrum of energetic particles in the downstream of the oblique shock with obliquity θBn = 80◦ accelerated in the framework of anisotropic
shock acceleration. (b) Particle momentum and pitch angle change vs. the injection particle pitch angle when the particles are injected and interact with the shock
transition for the first time. The injection particles’ speed is 400 km s−1.
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Figure 6. Same as Figure 5 except that the injection particles’ speed is 3455 km s−1.

(A color version of this figure is available in the online journal.)

field is nearly perpendicular to the shock normal. To return
upstream, the particle speed needs to meet v > u2/ cos θ2 �
u1/ cos θBn, where u2 and θ2 are the downstream solar wind
speed and the particle pitch angle, respectively (Decker 1988).
For a shock with θBn = 80◦, the speed threshold is roughly
six times the upstream solar wind speed, that is, much larger
than that for the oblique shock and the parallel shock. Here
we discuss two cases: injection of the newly born pickup ions
with v0 = u1, and injection of pre-accelerated particles with
v0 = 1.5u1/ cos θBn. Similarly, the source particles are injected
continuously and isotropically near the shock.

Figure 5 gives the downstream energy spectrum and the
particle mapping for the first case, with the same format as
Figure 2. It can be seen that all the injected particles are
transmitted downstream without any reflection as seen in the
situation in the parallel shock. The particle momentum changes
smoothly in the range between 0.9 < p/p0 < 1.9 along with the
initial injection pitch angle. The maximum speed of the particles
after being transmitted is about 1.9u1, which is much smaller
than the threshold u1/ cos θBn. All the particles cannot return to
the shock, i.e., simply escape along with the solar wind and no
particle experiences multiple shock encounters. These particles
make up the energy spectrum in a narrow energy range with low-
energy cutoff pcut = 0.9p0 and high-energy cutoff p′

cut = 1.9p0,
which are equal to the minimum and the maximum momentum
of the transmitted particles, respectively.

In Figure 6, the downstream energy spectrum and the parti-
cle mapping are shown for the case of v0 = 1.5u1/ cos θBn =
3455 km s−1. The particles undergo three kinds of tracks after
injection depending on their pitch angles: transmitted down-
stream, reflected, or non-interacting with shock. The momen-
tum and pitch angle changes are denoted for these three kinds of
particles as solid, dash-dotted, and dashed lines, respectively, in
Figure 6(b). Both the transmitted and the reflected particles are
accelerated. The non-interaction particles and reflected particles
will change pitch angle due to the scattering when moving in
the upstream, and some could return to the shock for further
acceleration. It can be seen that the pitch angle of the reflected
particles distributes in a narrow range (0.66–0.93), similar to
the situation in the oblique shock, which is expected to lead to
strong anisotropy at corresponding energies. A portion of trans-
mitted particles will then return to the shock since their energy
is above the speed threshold for returning, so that they can un-
dergo similar processes taking place in the oblique shock and
the parallel shock: scattering by the upstream and downstream
scattering center, crossing the shock back and forth. Eventually
in the upstream and downstream region, particles of various en-
ergies can be found. Let us return to the energy spectrum shown
in Figure 6(a). It can be seen that in the lower energy part (rela-
tive to the injection particle energy), there are two peaks with a
spectrum dip between. The spectra dip is also produced in both
Florinski’s model and Chalov’s model (Florinski et al. 2008b;
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Chalov & Fahr 2000), which is a consequence of efficient accel-
eration by adiabatic reflection. This low-energy part of the spec-
trum is generated by particles that encountered the shock once or
twice. At the higher energy part, there is a power-law distribution
contributed by the multiple shock-encounter particles, similar
to the oblique shock. Between 4.0 < p/p0 < 13 correspond-
ing to the first power-law spectrum, the fitting spectral index is
3.71 ± 0.01, i.e., it is harder than the standard diffusive ac-
celeration spectrum. Between 13 < p/p0 < 35 corresponding
to the second power-law spectrum, the fitting spectral index is
4.11 ± 0.03. This indicates that in this energy range, the parti-
cle acceleration has fallen into the DSA regime. Similar to the
oblique shock, the injection efficiency is above 1 with η = 2.71.

From the above analysis, it can be concluded that the highly
oblique shock is not sufficient to efficiently accelerate the low-
energy particles like the newly born pickup ions. Le Roux &
Webb (2009) pointed out that the injection threshold of DSA
in focused transport is given by v0 > u1/ cos θBn = vdHT,
where vdHT is the de Hoffmann–Teller speed. The accelerated
energy spectrum at the momenta over multiple times injection
momentum is a double power-law distribution. In addition, the
reflection causes large anisotropy at the momenta around the
injection particle momentum.

7. DISCUSSION AND CONCLUSION

In previous studies, the focused transport theory has been
proved by Voyager 1 and Voyager 2 to be an efficient tool for
reproducing the observational features of the lower energy TSPs,
such as the anisotropy distribution, intensity spike, multiple
power-law energy spectrum, and so on (le Roux et al. 2007;
le Roux & Webb 2009; Florinski et al. 2008a, 2008b; Florinski
2009). This is difficult to explain with the standard DSA
theory. Here we investigate the pickup ion acceleration at three
kinds of shocks with varying obliquity in the framework of
focused transport theory. Our focus is on the accelerated energy
spectra and their transition from anisotropic acceleration to
DSA. Some intriguing new knowledge about the anisotropic
shock acceleration is obtained. First, we confirm that the shock
acceleration leads to the two-component spectral distribution.
From the particle pitch angle and momentum mapping across the
shock, the shape of the low-energy component of the spectrum
is contributed by the particles interacting with the shock once
or a few times. The spectral shape sensitively depends on the
momentum and pitch angle of the injection particles. For a
parallel shock, the high-energy component of the spectrum
is a power-law spectrum with a spectral index equal to the
prediction of the standard DSA theory. For an oblique or quasi-
perpendicular shock, if the particles can be accelerated to cross
the shock back and forth for multiple times, the high-energy
component of the spectrum is formed and is represented as a
double power-law distribution: a harder spectrum with slope less
than the spectral index of the standard DSA spectrum followed
by another power-law spectrum consistent with the DSA at
higher energies.

We found that the spectrum slope at high energies depends on
the second-order anisotropy. The formation of the double power-
law distribution can be explained according to the anisotropy
distribution under the combination of adiabatic focusing by
shock and the pitch angle scattering in upstream and downstream
media. The anisotropic shock acceleration will eventually go
into the DSA regime at higher energy, where the second-order
anisotropy is close to zero, although the first-order anisotropy
can still be large.

We compare the intensity of the energy spectrum given by
the anisotropic shock acceleration with that given by the DSA
for the same injection and find that the acceleration efficiency is
different even at high energies. To measure the acceleration
efficiency, we define the injection efficiency as the ratio of
the intensity of the distribution functions given by the two
acceleration theories in the high-energy range where particles
get into the standard DSA regime. The DSA takes a built-
in assumption that particles are accelerated entirely according
to the probability of shock crossing. For a parallel shock, a
considerable number of particles are decelerated. They cannot
return to the upstream so the probability of getting multiple
shock crossings is low. The injection efficiency is reduced
below 1. For the oblique shock or quasi-perpendicular shock, the
reflection due to the magnetic field kink makes particles cross
the shock and gain energy, resulting in improved acceleration
efficiency. The injection efficiency could be significantly larger
than 1.

The observations of the energetic ions by the two Voyager
spacecraft in the vicinity of the termination shock provide
us with essential information about pickup ion acceleration.
Cummings et al. (2006) found that the energetic proton tends
to form a spectrum of exceptional four power laws that may
be evidence of two-component acceleration: at low energies the
energy spectrum is a double power-law spectrum with a break at
0.4 MeV; a second component appears above 1 MeV, consisting
of two power-law spectra with a break at 3.2 MeV. Le Roux &
Webb (2009) developed a time-dependent model in which the
time variation in the magnetic field angle from the average angle
is taken into account. This model successfully produces multiple
power-law energy spectra with steady break points in the
upstream spectrum. According to the current understanding of
anisotropic shock acceleration, we can give some supplementary
reasons why the multiple power-law spectra are naturally
produced in the observations and in the modeling. As we know,
the termination shock has an obliquity of ∼90◦ on average.
The analysis in the above section tells us that for such a
highly oblique shock, the newly born pickup ions with speed
nearly equal to the solar wind speed are not able to accelerate
and are simply transmitted to the heliosheath. However, the
magnetic field observation of Voyager 1 near the termination
shock indicated that the resulting shock obliquity deviates from
the average angle of 90◦ to less than 60◦, i.e., this shock is no
longer a quasi-perpendicular shock in a significant fraction of
time. During the magnetic field derivation time interval, pickup
ions are expected to be accelerated to several or even tens of
times the original speed in the solar wind frame since the shock
obliquity θBn < 60◦. Some of the particles are accelerated
to high energies to form a double power-law spectrum. The
pre-accelerated particles whose speed is beyond the injection
threshold, which is usually around the de Hoffmann–Teller
speed VdHT = u1 sec θBn, are able to be further accelerated
by the highly oblique termination shock to higher energy. The
acceleration process is similar to that in the case discussed in
Section 6.3. So at the very high energies, the spectra resemble
another double power-law spectrum. Eventually, the accelerated
energy spectra should include two parts corresponding to two
components of acceleration, respectively, with a transition
and four power laws generated. Decker et al. (2006) found
that the pitch angle anisotropy of the TSPs peaks at a high
energy of ∼0.35 MeV. Since the anisotropy decreases with
the increasing particle energy relative to the injection particle
energy (E/E0), the particles with an energy of ∼0.35 MeV
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can be reasonably imaged as main injection particles for the
second component acceleration. So, given the injection energy
threshold as 0.35 MeV, the shock obliquity is estimated as
θBn ∼ 87◦. This is in agreement with the work of Florinski
et al. (2008b), where the shock obliquity is estimated to vary
between 80◦ and 88◦ along with time according to the first-order
anisotropy distribution.

Zank et al. (1996) and Lee et al. (1996) pointed out that a
strong cross-shock electric field may lead to multiple particle
reflections or surfing on the shock surface to achieve a rapid
energy gain. The shock surfing effect is more important for
the acceleration of low energy particles, for which the pitch
angle change rate due to the reflection by cross-shock electric
field is comparatively larger. The FTE itself contains the term
of the cross-shock electric field, so it is easy to incorporate the
shock surfing acceleration mechanism for a global consideration
in the anisotropic shock acceleration. Le Roux et al. (2007)
compared the accelerated energy spectra under circumstances
with or without the cross-shock electric field and found that
the cross-shock electric field can change the low-energy part
of spectra. Furthermore, for an oblique shock, the power-
law spectra at the intermediate energies become harder if the
cross-shock electric field is considered. These features are
perhaps due to the fact that the reflecting by the cross-shock
electric field makes the particles more anisotropic. Recently, we
conducted a simulation to investigate the intensity change of the
energy distribution function resulting from the shock surfing and
found that the cross-shock electric field can essentially improve
the acceleration efficiency, especially in a quasi-perpendicular
shock. Although the initial work is performed, the role of the
cross-shock electric field for termination shock acceleration
and how and why it changes the shock acceleration spectra,
acceleration efficiency, anisotropy, and spatial distribution of
the energetic particle are not completely known. This will be
our next consideration.
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