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Abstract

The compressible component of solar wind turbulence displays a slow-mode feature. However, the nature of the
slow-mode fluctuations remain open. In this work, based on numerical simulations of the driven compressible
magnetohydrodynamic (MHD) turbulence with a uniform mean magnetic field, we use polarization of the MHD
modes to decompose turbulent velocity and magnetic fields into Alfvén modes, slow modes, and fast modes. The
numerical results with different cross-helicity, plasma beta β, and Alfvén Mach number note that fast modes are a
marginal component among the three decomposed modes, and the compressible component of the MHD
turbulence behaves mainly as the slow modes. Both of the decomposed slow modes and Alfvén modes exhibit a
Kolmogorov-like power-law spectrum and evident anisotropy, with wavevectors mainly distributing around the
directions perpendicular to the uniform mean field. For the first time, it is found that the propagating slow
magnetosonic waves as well as the non-propagating slow-mode structures are combined to contribute to the
compressible fluctuations, and the propagating Alfvén waves as well as the non-propagating Alfvén-mode
structures coexist for the non-compressible fluctuations. However, there is unlikely a one-to-one match between
the identified slow waves and Alfvén waves, or between the identified slow-mode structures and Alfvén-mode
structures. These findings provide a new perspective on our understanding of the compressible and non-
compressible fluctuations.
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1. Introduction

The solar wind is permeated by various kinds of propagating
waves and convective structures (Tu & Marsch 1995; Bruno &
Carbone 2013). A complex mixture of compressible and
incompressible fluctuations is involved in the solar wind
turbulence, with compressible fluctuations usually as a minor
but significant component. The compressibility of solar wind
fluctuations usually manifests itself as a slow-mode nature
(Burlaga 1968; Marsch & Tu 1993; Tu & Marsch 1994; Hnat
et al. 2005; Kellogg & Horbury 2005; Yao et al. 2011, 2013a,
2013b; Howes et al. 2012; Klein et al. 2012; Zhao et al. 2014;
He et al. 2015; Narita & Marsch 2015; Shi et al. 2015, 2017;
Wang et al. 2016; Verscharen et al. 2017). As the quasi-parallel
slow-mode magnetosonic waves are believed to be strongly
damped, e.g., can be damped to be less than 1/e of original
amplitude within three wavelengths of propagation in the solar
corona (Ruan et al. 2016), the slow-mode-like compressible
fluctuations have often been interpreted as pressure-balanced
structures (PBSs; Tu & Marsch 1995). On the basis of the
Helios data, Tu & Marsch (1994) found an anticorrelation
between magnetic pressure and thermal pressure for fluctua-
tions at inertial range scales of solar wind turbulence. Kellogg
& Horbury (2005) studied small-scale density oscillations in
the solar wind and recognized that the PBSs they found are
simply ion acoustic waves in a perpendicular propagation limit.
Using a large statistical set of measurements from the Wind
spacecraft, Howes et al. (2012) showed that the compressible
component of inertial range solar wind turbulence is primarily
in the category of kinetic slow-mode. Recently, the study of

Verscharen et al. (2017) suggests that the large-scale
compressive fluctuations in the solar wind behave more fluid-
like than kinetic slow-mode-like. However, as far as we know,
it has no answer about the true nature of the slow-mode
fluctuations in the inertial range of the solar wind. Are they just
propagating waves or just convected structures? The velocity
fluctuation can be invoked beside the density and magnetic
field perturbations to identify the longitudinal compression/
expansion, which are the drivers of the energy propagation for
slow modes (He et al. 2015).
Meanwhile, the question of the origin of slow-mode waves

and convected structures is still open. Both waves and
structures could be generated in the sub-Alfvénic flow region
near the Sun (Liu et al. 2014), and subsequently propagate
through or are passively advected by the solar wind into the
interplanetary medium (Tu & Marsch 1995; Borovsky 2008;
Zank et al. 2017). On the other hand, as the relative amplitudes
of the compressible fluctuations in the solar wind show no
prominent radial evolution, both waves and structures are
suggested to be locally produced and replenished by the
nonlinear evolution or energy cascade of turbulence (Roberts
et al. 1992; Tu & Marsch 1993; Bruno et al. 2001).
Apart from the observational evidences, numerical simula-

tions of magnetohydrodynamic (MHD) turbulence have been
conducted to understand the behaviors of the compressive
fluctuations, with many of them focusing on the statistical
properties of compressible modes (Cho & Lazarian 2002, 2003;
Passot & Vázquez-Semadeni 2003; Vestuto et al. 2003;
Cho & Lazarian 2005; Hnat et al. 2005; Kowal et al. 2007;
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Kowal & Lazarian 2010; Brandenburg & Lazarian 2013; Yang
et al. 2015, 2017a, 2017b, 2017c; Zhang et al. 2015a, 2015b;
Yoon et al. 2016; Shi et al. 2017). The spectral properties
and/or anisotropy of slow modes in MHD turbulence were
shown to be a Kolmogorov k−5/3 spectrum and scale-dependent
Goldreich–Sridhar anisotropy, with slow modes passively
imitating Alfvén modes, while fast modes have a k−3/2 spectrum
and isotropy (Cho & Lazarian 2003). The intermittency of the
different MHD modes was shown to be very different, and the
high-order statistics of compressible motions clearly depended
on the sonic and Alfvénic Mach number (Kowal & Lazar-
ian 2010). At the same time, the local behaviors of MHD slow
modes are discussed. Zhang et al. (2015a) identified slow wave
trains from the simulation of MHD turbulence, and provided a
description of their evolution and possible interaction with other
types of MHD waves. Yang et al. (2017a) found the existence of
multiscale PBSs in MHD turbulence as well as their likely
production by the perpendicular cascade of highly oblique-
propagating slow-mode waves. Yet the true nature and origin of
the slow-mode component of the MHD turbulence still remains
to be understood. These questions will be studied here by an
analysis of the numerical results of the driven MHD turbulence
with a uniform mean magnetic field. Specifically, the polariza-
tions of the MHD modes are used to decompose turbulent
velocity and magnetic fields into slow modes, Alfvén modes,
and fast modes; the propagation of the decomposed slow modes
and Alfvén modes are investigated in detail.

2. Numerical MHD Model

The details of the three-dimensional (3D) numerical MHD
model have been described in Yang et al. (2017a). Here, we
describe its basic aspects and modifications for the current
study. The description of the plasma is given by compressible
MHD governing equations, which involve a fluctuating flow
velocity, u(x, y, z, t), magnetic field, b(x, y, z, t), density, ρ(x, y,
z, t), and temperature, T(x, y, z, t). A uniform mean magnetic
field, B0=(0, 0, 1), is imposed in the z-direction. The
numerical MHD model solves the conservation of mass,
momentum, and energy together with the induction equation as
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corresponding to the total energy density and current density,
respectively. Here, ρ is the mass density, p is the thermal
pressure, B= B0+ b denotes the total magnetic field, t is
time, γ=5/3 is the adiabatic index, ν=0.0001 is the

viscosity, and η=0.0001 is the magnetic resistivity,
respectively.
The large-scale random drivers f1 and f2 are applied in

Fourier space and then are transformed back into real space
(Cho & Lazarian 2003; Yang et al. 2017a). At each time
moment, the components of f1 and f2 are defined in Fourier
space as kPm iexp f( ) ( ), where f is the uniform-distributed
random phase angle between [0, 2π]. kPm ( ) is isotropic in
k-space and consists of 21 Fourier components with a
wavenumber of k�3.5. The amplitude of each Fourier
component is a constant plus a small noise. f1 and f2 satisfy
∇· f1=0 and ∇· f2=0, respectively. An example of their
space and temporal behaviors is shown in Yang et al. (2017a).
To introduce cross-helicity (indicator of imbalance), the
amplitude of f1 is designed to be not equal to that of f2.
For a snapshot in time, the turbulent velocity fields are

decomposed into three MHD eigenmodes, i.e., fast, slow, and
Alfvén, in the Fourier space, which are defined in the reference
frame related to the mean magnetic field B0. For a given
wavevector k, the three MHD mode velocities
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form an orthogonal coordinate system (Marsch 1986; Zhang
et al. 2015a). In Equations (5)–(6), vp,F, vp,S, as well as vA are
the phase speed of the fast and slow magnetosonic waves as
well as Alfvén waves, k̂ is the unit vector along the wavevector
k, B0

ˆ is the unit vector along the mean magnetic field B0, and θ

is the angle between k̂ and B0
ˆ . The perturbation speeds,

corresponding to fast (u kFM ( )), slow (u kSM ( )), and Alfvén
(u kAM ( )) modes are computed via projections u k( ) into these
three perturbation directions. Please note that u k( ) is assumed
to be the superposition of velocity fluctuations of the three
MHD modes.
According to the magnetic fields of the fast ( bFMd ), slow

( bSMd ), and Alfvén ( bAMd ) modes (Marsch 1986; Zhang
et al. 2015a), we obtain perturbation magnetic fields of fast
(b kFM ( )), slow (b kSM ( )), and Alfvén (b kAM ( )) modes for the
MHD turbulence by
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After the above decomposition of the MHD turbulence into
three modes, we conduct inverse Fourier transform to get the
perturbation velocities and magnetic fields of the three modes
in real space.
To choose a particular time series for the mode analysis

above, the following criterion is used: the trace power spectral
densities (PSDs) of the velocity and magnetic field are
maintained to change little.
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3. Numerical Results

Here, we present numerical results with different cross-
helicity, plasma beta β, and Alfvén Mach number MA. The
results of runs with altered parameters are based on a basic

case, in which rms amplitudes of the magnetic field (Brms) and
velocity (urms) are maintained to be approximately 0.39 and
0.41, the normalized cross-helicity (σc) is about 0.62, the
plasma beta β is about 1.50, Mach number (urms/Cs) is about

Figure 1. Spectra of Alfvén modes (blue), slow modes (red), fast modes (gray), total modes (black, Alfvén modes+slow modes+fast modes), and original data (green
crosses) of the velocity (u, upper panels) and magnetic field (b, lower panels) when σc=0.01, σc=0.36, and σc=0.62. For reference, a Kolmogorov-like power-
law spectrum is plotted as the purple lines.

Figure 2. Distributions of power spectral densities (PSDs) of the slow-mode velocity (top panels) and the Alfvén-mode velocity (bottom panels) on the k−θ plane
when σc=0.01, σc=0.36, and σc=0.62. Note that PSDs are in log scale, and the white color on the color map means there is no data in the corresponding
k−θ bin.
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0.32, and Alfvén Mach number (urms/VA) is 0.41, where
Cs(=1.21) and VA (=1.00) are the sonic speed and Alfvén
speed, respectively. Relative to the basic case, a parameter is
adjusted in each run. It should be noted that the parameters,
such as cross-helicity, plasma beta β, Alfvén Mach numberMA,
and so on, are measured at the time slice used for the analysis.

Figure 1 shows the spectra of velocity (u, upper panels) and
magnetic field (b, lower panel) for Alfvén modes (blue), slow
modes (red), and fast modes (gray) when σc=0.01 (left
panels), σc=0.36 (middle panels), and σc=0.62 (right
panels). In this figure, the spectra of the total modes, whose
PSDs are the sums of those of Alfvén modes, slow modes, and
fast modes, are shown as the black lines; the original spectra of
the velocity (u) and magnetic field (b) are presented as the
green crosses; and a Kolmogorov-like power-law spectrum is
plotted as the purple lines for reference. It can be seen that for
the velocity and magnetic field, the spectra of both Alfvén
modes and slow modes exhibit comparable PSDs, while the
fast modes are only a marginal component among the three
modes. The spectrum of the total modes follow a Kolmogorov
spectrum. For the velocity, the spectrum of the total modes
completely coincides with the original spectrum. For the
magnetic field, the spectrum of the total modes keeps the same
trend with the original spectrum, and the PSDs of the total
modes are nearly equal to those of the original magnetic field,
except those at the energy-injection region, which peaks at
k=2 and terminates at k=3.5. As the cross-helicity σc

increases, this approximate equality between Ek(b) for total
modes and for the original data is more evident.
Figure 2 give the distributions of the PSDs of the slow-mode

velocity (top panels) and the Alfvén-mode velocity (bottom
panels) on the k−θ plane when σc=0.01 (left panels),
σc=0.36 (middle panels), and σc=0.62 (right panels). It can
be seen that the PSDs of both the slow modes and the Alfvén
modes mainly concentrate around the wavevectors perpend-
icular to the mean field B0. With the increase of the
wavenumber k, the condensate is more evident, which means
that their energies mainly lie at quasi-perpendicular propaga-
tions. It should be noted that in this figure the slow modes and
the Alfvén modes with θ>90° do not associate with the
inverse-propagation waves as we only conduct 3D (x, y, z)
Fourier transformations without making the temporal Fourier
transform.
Figure 3 presents the distributions of the z-component of the

slow-mode velocity (VzSM, upper panels) and the x-component
of Alfvén-mode velocity (VxAM, lower panels) in the y=4.93
plane when σc=0.01 (left panels), σc=0.36 (middle panels),
and σc=0.62 (right panels). As the oscillations of the slow
modes along the z-direction are dominant over those along the
x- and y-directions, and the oscillations of the Alfvén modes
along the x- and y-directions are equivalent, here we just
show the z-component of the slow-mode velocity and the
x-component of Alfvén-mode velocity for illustration. It can be
seen that in real space, the oscillation patterns of both the slow

Figure 3. Distributions of the z-component of the slow-mode velocity (VzSM, upper panels) and the x-component of Alfvén-mode velocity (VxAM, lower panels) in the
y=4.93 plane when σc=0.01, σc=0.36, and σc=0.62. The white dashed lines define the selected lines (Line 1 and Line 2) for the propagation speed analysis.
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modes and the Alfvén modes tend to preferentially align along
the direction of the uniform mean field.

To analyze the nature of the decomposed slow modes and
Alfvén modes, we extract the values of the slow-mode velocity
and the Alfvén-mode velocity along the direction of the mean
field B0 shown as Line 1 and Line 2 in Figure 3, and stack the
obtained profiles in time sequence. This gives the distance–time
(Z−t) diagrams as displayed in the upper panels of Figures 4–7.
To determine whether the slow-mode velocity and the Alfvén-
mode velocity follow the dispersion relation of the slow
magnetosonic wave and the Alfvén wave, respectively, we use
the obtained distance–time diagrams and conduct the spatial-
temporal Fourier analysis of them. This gives wavenumber–
frequency (kz− ω) diagrams of the slow-mode velocity and the
Alfvén-mode velocity as shown in the lower panels of Figures 4–
7. The white dashed lines in Figures 4 and 6 denote the theoretical
dispersion relation of slow magnetosonic wave ωSM(kz), which
reads as k v Cs Vcos min ,z ASM p,Sw q= »( ) ( ) (Zhang et al.
2015a). The white dashed lines in Figures 5 and 7 denote the
theoretical dispersion relation of Alfvén wave ωAM(kz), which
reads as ωAM/kz=VA. It should be noted that in these figures the
slow-mode velocity and the Alfvén-mode velocity are extracted
along the same lines.

Figure 4 shows that along Line 1, the decomposed slow-
mode velocities display no evident characteristic propagation
speed for the three cases. Although their distance–time
diagrams display stripes resulting from the fronts of the
decomposed slow-mode velocities, most of the stripes possess

no obvious slopes. The corresponding wavenumber–frequency
diagrams also give no clear relationship between wavenumber
(kz) and frequency (ω). Whether it is for the small kz or the large
kz, the high power region of the decomposed slow modes
mainly lies near ω=0, indicating that most of the decomposed
slow-mode velocities along Line 1 are non-propagating parts of
the perturbations.
Figure 5 shows that for the cases of σc=0.01 and σc=0.36,

the decomposed Alfvén-mode velocities along Line 1 do not
possess an evident characteristic propagation speed, which points
out that most of the decomposed Alfvén-mode velocities along
Line 1 behave as non-propagating Alfvén-mode perturbations.
However, for the case of σc=0.62, most of the decomposed
Alfvén-mode velocities along Line 1 have an evident propagating
speed, which coincides with the phase speed of Alfvén wave,
indicating that most of the decomposed Alfvén-mode velocities
along Line 1 for this case behave as Alfvén waves.
Figure 6 displays distance–time (Z−t) diagrams and

wavenumber–frequency (kz− ω) diagrams of the slow-mode
velocity (VzSM) for Line 2 shown in Figure 3. From Figure 6,
we can see that the decomposed slow-mode velocities along
Line 2 display completely different propagating features from
those along Line 1. The distance–time diagrams show the
steep, recurrent stripes, but most of the stripes have obvious
slopes. The slopes of these stripes correspond to the
propagating speeds of the decomposed slow-mode velocities.
The corresponding wavenumber–frequency diagrams show that
the slow wave dispersion cross lines match well with the high

Figure 4. Distance–time (Z−t) diagrams (upper panels) and wavenumber–frequency (kz − ω) diagrams (lower panels) of the slow-mode velocity (VzSM) along Line
1 shown in Figure 3 when σc=0.01, σc=0.36, and σc=0.62. The white dashed lines show the theoretical dispersion relation of slow magnetosonic wave ωSM(kz).
Note that the PSDs are in log scale.
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power region of the decomposed slow-mode velocities, which
is a clear signature of the existence of slow magnetosonic
waves. Also, counter-propagating slow-mode waves are more
prone to be seen when the cross-helicity σc decreases. As the
wavevectors of the slow-mode velocity concentrates around the
perpendicular direction, it can be said that the slow
magnetosonic waves identified here are mainly quasi-perpend-
icular propagating.

Figure 7 shows that unlike the slow-mode velocities along
Line 2, the Alfvén-mode velocities along the same line have no
evident characteristic propagation pattern for σc=0.01, while
their propagation conforms well to the dispersion curve of
Alfvén waves when σc=0.25 and σc=0.62. Also, as the
wavevectors of the Alfvén-mode velocity concentrate around
the perpendicular direction, the identified Alfvén waves can be
said to be mainly quasi-perpendicular propagating.

To see how the above analyses are influenced by plasma beta
β and Alfvén Mach numberMA, we also give the results of runs
with β=0.15, β=8.32, MA=0.12, and MA=0.58 for the
basic case of σc=0.62. Figure 8 shows the spectra of Alfvén
modes, slow modes, fast modes, total modes, and original data
of velocity and magnetic field. It can be seen that the fast
modes are only a small contribution to the total modes,
although their contribution increases with the decrease of
plasma beta β and the increase of Alfvén Mach number MA.
For the slow modes, their contribution to total modes changes
largely with different plasma beta β but slightly withMA. When
plasma beta β is above 1, except in the energy-injection region,
the slow-mode amplitudes are comparable to the Alfvén-mode
amplitudes for both the velocity and magnetic field

fluctuations. When plasma beta β becomes smaller than 1,
the slow modes become important with the decrease of the
scale for the velocity fluctuations, while they are a marginal
component of the total modes for the magnetic field fluctuation.
The distance–time diagrams and wavenumber–frequency

diagrams of the slow-mode velocity (VzSM) and the Alfvén-
mode velocity (VxAM) for β=0.15, β=8.32,MA=0.12, and
MA=0.58 give that both propagating and non-propagating
parts of the slow-mode and Alfvén-mode perturbations also
coexist. For the identified non-propagating slow-mode pertur-
bations, the Alfvén modes along the same line can behave as
non-propagating or propagating perturbations. For the identi-
fied slow-mode waves, the Alfvén modes along the same line
can also behave as non-propagating or propagating
perturbations.
To illustrate the correlations among the propagating

compressive perturbations and among the propagating non-
compressive perturbations, Figure 9 presents the distance–time
diagrams of the propagating compressive perturbations Vz, Bz,
B, and ρ (upper panels), and non-compressive perturbations
VxAM, BxAM, VyAM, and ByAM (lower panels), respectively. In
this figure, the white dashed lines show the theoretical
propagation speed of slow magnetosonic waves and Alfvén
waves along the z-direction. The compressive perturbations and
non-compressive perturbations are along different slices. It can
be seen that for the propagating compressive perturbations, Vz
is positively correlated with Bz, and Vz is also positively
correlated with B, and the magnetic field intensity B is in
negative correlation with the density ρ. Also, their propagation
speed along the z-direction is the predicted propagation speed

Figure 5. Same as Figure 4, but for the Alfvén-mode velocity (VxAM). The white dashed lines show the theoretical dispersion relation of Alfvén wave ωAM(kz).
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of slow magnetosonic waves. Thus, it is verified that these
propagating compressive perturbations are anti-propagating slow
magnetosonic waves. For the propagating non-compressive
perturbations, VxAM and BxAM, with the nearly same values,
are in positive correlation, and VyAM and ByAM, with the nearly
same values, are also in positive correlation. Their propagation
speed along the z-direction is the predicted propagation speed of
Alfvén waves, noting that these propagating non-compressive
perturbations are anti-propagating Alfvén waves.

To see whether the non-propagating compressive and non-
compressive perturbations are structures, we first conduct
four-dimensional (4D) spatial-temporal (x, y, z, t) Fourier
transformations of the whole computational domain, and then
filter with frequency ω=0, and finally conduct inverse Fourier
transformations to get the pure non-propagating perturbations
distributed in real space. Figure 10 displays the distance–time
diagrams of the filtered compressive perturbations Vz, Bz, B,
and ρ (upper panels) and non-compressive perturbations VxAM,
BxAM, VyAM, and ByAM (lower panels). This figure shows that
the filtered compressive perturbations are satisfied with the
polarity relation of slow magnetosonic waves, and the filtered
non-compressive perturbations conform to the polarity relation
of Alfvén waves, thus verifying that these non-propagating
compressive and non-compressive perturbations are slow-mode
and Alfvén-mode structures, respectively.

As the total-energy-conserving equation is used in the
current simulations, constant driving will result in constant
accumulation of internal energy. To see how much the internal

energy increases, Figure 11 presents the evolution of internal
energy from t=0 to t=30 for the basic case. It can be seen
that there is a quick increase of the internal energy from t=0
to t=1.2, and afterwards it rises slowly.

4. Summary and Discussion

In this work, based on the simulation results of the driven
compressible MHD turbulence with a uniform mean magnetic
field, we analyze the nature of the slow modes and Alfvén
modes and do a comparison between them. The following
statistical results are present: (1) the compressible component of
the MHD turbulence is mainly in the slow modes with a
Kolmogorov-like power-law spectrum; (2) the slow-mode and
Alfvén-mode perturbations show evident anisotropy, with the
wavevectors mainly distributing around the perpendicular
directions; (3) the slow-mode perturbations can behave as the
propagating slow magnetosonic waves and the non-propagating
slow-mode structures; (4) the Alfvén-mode perturbations consist
of the propagating Alfvén waves and the non-propagating
Alfvén-mode structures; (5) there is an unlikely one-to-one
match between the identified slow waves and Alfvén waves, or
between the identified slow-mode structures and Alfvén-mode
structures; and (6) for both the slow modes and the Alfvén
modes, the generation in the vicinity of the wavevectors
perpendicular to the uniform mean field is more effective than
that near the wavevectors parallel to the uniform mean field.

Figure 6. Distance–time (Z−t) diagrams (upper panels) and wavenumber–frequency (kz − ω) diagrams (lower panels) of the slow-mode velocity (VzSM) along Line 2.
The white dashed lines show the theoretical dispersion relation of slow magnetosonic wave ωSM(kz). Note that the PSDs are in log scale. It can be seen that the oblique
stripes in the distance–time diagrams (upper panels) are in line with the dispersion relation of oblique slow-mode waves as illustrated in the lower panels.
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Figures 1 and 8 also show that at the energy-injection region,
k<3.5, fluctuations behave as Alfvén modes, and slow modes
are not effectively injected. Therefore, it is hard for slow modes
themselves to cascade from energy-injection scales to smaller
scales, and slow modes are prone to be produced directly from
Alfvén modes.

However, along with these findings, there are some
challenges and limitations. The dynamics in the solar wind

plasma are largely collisionless, and there are some debates
about whether MHD theories are invalid for the solar wind.
Employing the linear Vlasov–Maxwell dispersion relation for a
fully ionized proton and electron plasma, Klein et al. (2012)
show that the MHD three wave modes have kinetic counter-
parts in a collisionless plasma that have properties similar to the
MHD modes at large scales. The solar wind observations show
that the typical dependence of cross-correlation between proton

Figure 7. Same as Figure 6, but for the Alfvén-mode velocity (VxAM). The white dashed lines show the theoretical dispersion relation of Alfvén wave ωAM(kz).

Figure 8. Same as Figure 1, but when β=0.15, β=8.32, MA=0.12, and MA=0.58.
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density and the field-aligned component of the magnetic field
on the ion plasma beta is consistent with a spectrum of
compressible wave energy that is almost entirely in the kinetic
slow-mode, indicating that the compressible component of the
inertial range solar wind turbulence are primarily kinetic
slow modes (Howes et al. 2012; Klein et al. 2012). However,

Verscharen et al. (2017) showed that the observations of the
slow wave polarization of the solar wind turbulence agree more
with the MHD predictions than with those of the kinetic
predictions, which suggest that the plasma behaves more like a
fluid in the solar wind than expected. Meanwhile, the MHD
slow-mode waves are found in the solar wind (Yao et al. 2013b;

Figure 9. Distance–time (Z−t) diagrams of the propagating compressive perturbations Vz, Bz, B, and ρ (upper panels) and the propagating non-compressive
perturbations VxAM, BxAM, VyAM, and ByAM (lower panels) for the basic case of σc=0.62. The white dashed lines show the theoretical propagation speed of slow
magnetosonic waves and Alfvén waves along the z-direction. The compressive perturbations and non-compressive perturbations are along different slices.

Figure 10. Distance–time (Z−t) diagrams of the non-propagating compressive perturbations Vz, Bz, B, and ρ (upper panels) and the non-propagating non-
compressive perturbations VxAM, BxAM, VyAM, and ByAM (lower panels) along for the basic case of σc=0.62. The compressive perturbations and non-compressive
perturbations are along different slices.
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He et al. 2015; Shi et al. 2015). As the current model lacks
realistic descriptions of kinetic solar wind processes, the slow
magnetosonic waves are identified here. Including kinetic
descriptions of plasma into numerical models is necessary to
see the generation of kinetic slow-mode waves.

Moreover, the damping rate of the actual slow waves is
proportional to the parallel component of the wavevector, and
for quasi-perpendicular wavevectors, the slow wave corre-
sponds to an undamped, non-propagating PBS (Howes
et al. 2006). Here, we find that the quasi-perpendicular slow
magnetosonic waves and the non-propagating features coexist
in the MHD turbulence. Currently, we have no answer to the
question whether the non-propagating features, such as slow-
mode structures, originate from the quasi-perpendicular slow-
mode waves, although multiscale PBSs are shown to be likely
associated with the oblique-propagating slow-mode waves
(Yang et al. 2017a).

Also, the nonlinear evolution of the MHD turbulence gives
the prevalence of the quasi-perpendicular slow and Alfvén
modes. Do the quasi-parallel modes suffer from strong
damping, although kinetic damping is out of scope of this
work, or can they just not be effectively produced by the
energy cascade of the MHD turbulence? For the different cases
presented in this work, we make comparisons between several
slices from each datacube, which may not be the best way to do
it. Devising some statistical measure, such as the bispectrum
method (Burkhart et al. 2009), seems necessary to further
investigate the interaction versus propagation about waves and
structures. At last, it is important to determine the fraction of
the volume or energy with propagating and non-propagating
perturbations. In future works, we plan to use 4D spatial-
temporal (x, y, z, t) Fourier transformations of the whole
computational domain to address this question.
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