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Abstract We carry out the adaptive mesh refinement (AMR) implementation of our solar–
interplanetary space-time conservation element and solution element (CESE) magnetohy-
drodynamic model (SIP–CESE MHD model) using a six-component grid system (Feng,
Zhou, and Wu, Astrophys. J. 655, 1110, 2007; Feng et al., Astrophys. J. 723, 300, 2010).
By transforming the governing MHD equations from the physical space (x, y, z) to the
computational space (ξ, η, ζ ) while retaining the form of conservation (Jiang et al., So-
lar Phys. 267, 463, 2010), the SIP–AMR–CESE MHD model is implemented in the ref-
erence coordinates with the aid of the parallel AMR package PARAMESH available at
http://sourceforge.net/projects/paramesh/. Meanwhile, the volumetric heating source terms
derived from the topology of the magnetic-field expansion factor and the minimum angular
separation (at the photosphere) between an open-field foot point and its nearest coronal-hole
boundary are also included. We show the preliminary results of applying the SIP–AMR–
CESE MHD model for simulating the solar-wind background of different solar-activity
phases by comparison with SOHO observations and other spacecraft data from OMNI. Our
numerical results show overall good agreements in the solar corona and in interplanetary
space with these multiple-spacecraft observations.
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Figure 1 Six-component grid: (a) a spherical overset grid consisting of six identical components; (b) di-
viding a sphere into six identical components with partial overlap; (c) stacking the spherical meshes of each
component up in the radial direction.

1. Introduction

In quantitatively modeling the solar-wind structures, 3D global MHD models have been de-
veloped (e.g. Mikić et al., 1999; Lionello, Linker, and Mikić, 2009; Riley et al., 2006; Rous-
sev et al., 2003; Tóth et al., 2005; Cohen et al., 2008; Lugaz et al., 2011; Tóth et al., 2012;
Usmanov and Goldstein, 2006; Feng, Zhou, and Wu, 2007; Nakamizo et al., 2009; van der
Holst et al., 2010; Feng et al., 2010). As pointed out by space-weather scientists (e.g. Dryer,
2007; Aschwanden et al., 2008; Watermann et al., 2009; Feng, Xiang, and Zhong, 2011),
high-performance computational models require further improvements in order to make
real- or faster than real-time numerical predictions of adverse space-weather events and their
influence on the geospace environment. On one hand, numerical solutions to the governing
magnetohydrodynamic (MHD) equations currently used for the numerical space-weather
modeling from the Sun to Earth or beyond are typically feasible only on massively parallel
computers. On the other hand, one numerical challenge is due to the presence of different
temporal and spatial scales on which solar-wind plasma occurs throughout the vast solar–
interplanetary space of these problems. Therefore, high-performance parallel computational
methods capable of better resolving the solution features of these flows are required. The
objective of the present article is to consider the scalable, massively parallel, block-based,
adaptive-mesh refinement (AMR) implementation on a six-component grid system (Fig-
ure 1) for our three-dimensional (3D) SIP–CESE MHD model (Feng, Zhou, and Wu, 2007;
Feng et al., 2010).

In order to solve numerical problems with multi-orders of spatial/temporal scales and
minimize memory requirements and CPU time, the AMR technique has become a ma-
ture tool to refine or coarsen mesh grids with the expected spatial resolution accord-
ing to spatial gradients of physical quantities. To support parallel implementation in nu-
merically solving partial differential equations (PDEs), a number of AMR software in-
frastructure packages have become available, such as AmrLib/BoxLib (Rendleman et al.,
2000), Chombo (Colella et al., 2007), GrACE (Parashar, 2007), PARAMESH (MacNe-
ice et al., 2000), and SAMRAI (Garaizar, Hornung, and Kohn, 1999). Recent develop-
ment of the AMR techniques has witnessed the successful applications to MHD problems
with disparate spatial and temporal scales (Powell et al., 1999; Linde, 2002; Ziegler, 2008;
Stone et al., 2008), among which FLASH (Fryxell et al., 2000; Linde, 2002), PLUTO
(Mignone et al., 2007), ATHENA (Stone et al., 2008), NIRVANA (Ziegler, 2008), and
BATSRUS (Powell et al., 1999; Tóth et al., 2005, 2012) developed for astrophysics and
space-weather modeling are several representatives using oct-tree adaptive meshes.
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In the present work, in order to realize the 3D SIP–CESE MHD model on six-component
grids (Figure 1) with the AMR capabilities for solar-wind MHD simulations, our consid-
erations run from the points of view of both the grid system with the solar-surface sphere
fitting and an easy-to-use AMR implementation. As is well known, our numerical modeling
requires the use of the spherical shell domain to describe the computational domain, which
leads us to have to treat the lower spherical boundary at the solar surface locating the center
of the computational domain. However, dealing with the spherical boundary properly is a
critical issue, as the Sun is the source of the activity in the corona and in interplanetary space
(Feng, Zhou, and Wu, 2007; Feng et al., 2010; Jiang et al., 2010). In such a spherical-shell
computational domain, how to take the advantage of the AMR implementation on a logi-
cally Cartesian-structured mesh for a parallel code needs a delicate treatment. Usually, such
domains can be partitioned into rectangular or polyhedron mesh grids. If a rectangular box
is used, although we can easily implement the AMR with the help of some existing tools
such as PARAMESH, CHOMBO, and NIRVANA, we can meet problems in boundary fit-
ting and boundary-condition implementation due to the fact that the spherical surface cannot
be consistently described by any rectangular box. To overcome this, the employment of a
body-fitted multi-block mesh and cutting-cell method can be a choice, which nevertheless
brings the questions of heavy management of the data structure and difficult implementa-
tion of the lower spherical boundary conditions, especially for the projected-characteristic
method in need of the finite-difference operation on the solar surface (Hayashi, 2005;
Wu et al., 2006; Feng et al., 2010). If a polyhedron cell is used (Feng, Zhou, and Wu, 2007;
Nakamizo et al., 2009), the sphere and boundary condition can be easily fitted. But for poly-
hedron grid system, we can encounter difficulties in AMR implementation, since we have
no conveniently easy-to-use existing grid-mesh tools or it is too complicated to be ready for
use such as OVERTURE at http://www.c3.lanl.gov/cic19/teams/napc/.

Naturally, the Sun’s spherical-shaped geometry suggests the use of spherical coordinates
(r, θ,φ). But spherical-polar grids raise numerical difficulties associated with the pres-
ence of both singularities and grid convergence near the poles (Feng et al., 2010), and
consequently may negatively impact the accuracy and performance of the numerical pro-
cedure. To overcome such problems, some composite or overlapping grids, such as the
three-component grid (Usmanov, 1996), the six-component grid (Feng et al., 2010), and
the two-component grid (Feng et al., 2011), have been proposed for the numerical study of
solar-wind modeling. In the six-component grid mesh (Figure 1), the surface of a sphere is
composed of six adjoining grid faces that cover the whole sphere with partial overlapping.
The six-component grid faces lend themselves naturally to a multi-component mesh data
structure and allow the discretization to be carried out with structured grids, thereby per-
mitting easier implementation of competitive numerical schemes. The 3D six-component
grid is obtained by stacking a sequence of concentric 2D spherical shell grids in the radial
direction and forming six three-dimensional blocks (Figure 1), each of which is a quadran-
gular frustum pyramid. The large-scale solar–interplanetary–terrestrial simulation domain
decomposition of these meshes can be easily obtained by generating multiple cuts or sub-
domains in the radial direction, thereby increasing the number of partitioning blocks that
can be farmed to different processors to 6N , where N is the number of cuts. Note that the
quasi-uniform and self-similar multi-component nature of the six-component grid makes it
ideally suited for implementation on massively parallel architectures (Feng et al., 2010).
However, implementing a parallel-AMR approach on the six-component grid system im-
plies a considerable undertaking because most of the AMR software infrastructures are
based on a logically Cartesian coordinate. This motivates us to resort to transforming the
calculation of the governing PDEs in the physical space to that of associated PDEs in the

http://www.c3.lanl.gov/cic19/teams/napc/
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reference space (locally or logically Cartesian coordinate), as done by Jiang et al. (2010),
in order to facilitate the AMR implementation with the help of the PARAMESH toolkit.
PARAMESH is an open-source software package of Fortran 90 subroutines and provides
us with friendly interfaces to transplant an existing serial code that uses a logically Carte-
sian structured mesh into a parallel code with adaptive-mesh refinement (AMR) (MacNeice
et al., 2000). The same package has been used by the FLASH and ATHENA codes in the
broad astrophysics community (MacNeice et al., 2000; Olson, 2006) and is available at
http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr.html.

As the first step, the predictive capabilities of the proposed numerical framework are
validated with numerical results for the ambient solar wind for Carrington rotations (CRs)
1967, 2009, 2060, and 2094 obtained on adaptively refined six-component grids through
coordinate transformation into the associated reference computational domain. This article
is outlined as follows: The governing MHD equations are described in Section 2. Section 3
discusses curvilinear coordinates transformation from physical space to reference space.
The AMR strategy is presented in Section 4. Numerical validation of code tests are given in
Section 5 for the four CRs. Finally, we present the conclusions and discussions.

2. Governing Equations

The three-dimensional equations governing solar-wind plasma can be described by the fol-
lowing MHD equations in Cartesian coordinates:

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

− ∂Fν

∂x
− ∂Gν

∂y
− ∂Hν

∂z
= S (1)

where

U = (ρ,ρvx, ρvy, ρvz, e,Bx,By,Bz)
T,

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvx

ρv2
x + p0 − B2

x

ρvxvy − BxBy

ρvxvz − BxBz

(e + p0)vx − (v · B)Bx

0
vxBy − Bxvy

vxBz − Bxvz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvy

ρvyvx − ByBx

ρv2
y + p0 − B2

y

ρvyvz − ByBz

(e + p0)vy − (v · B)By

vyBx − Byvx

0
vyBz − Byvz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvz

ρvzvx − BzBx

ρvzvy − BzBy

ρv2
z + p0 − B2

z

(e + p0)vz − (v · B)Bz

vzBx − Bzvx

vzBy − Bzvy

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr.html
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Fμ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

ν∇ · B
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Gμ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

ν∇ · B
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Hμ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0

ν∇ · B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S = (0, ρF0, ρv · F0,0)T − ∇ · B(0,B,v · B,v)T + (0,0,Qe,0)T

with the total pressure p0 = p + 1
2 B2. As usual, e = p

γ−1 + 1
2ρv · v + 1

2 B2 stands for the total
energy density. Here, ρ, v, p, and B are the mass density, plasma velocity, gas pressure, and
magnetic field. We use j to refer to the electric current density [j = (jx, jy, jz) = ∇ × B]. F0

is the external force exerted on the plasma. γ is the specific-heat ratio and is taken to be 1.5
here.

In Equation (1), the external force F0 = −GMs

r3 r − � × (� × r) − 2� × v is the sum of
solar-gravity force and inertial force due to the corotating frame with the Sun. G,Ms , and
� are the gravity constant, solar mass, and solar angular speed.

In Equation (1), Powell’s source terms −∇ · B(0,B,v · B,v)T (Powell et al., 1999) and
the diffusive control term ∇(ν∇ · B) (Marder, 1987; van der Holst and Keppens, 2007;
Feng et al., 2011) have been added in the MHD equations to deal with the divergence of the
magnetic field. Here, following Feng et al. (2011), ν = 1.3( 1

�x2 + 1
�y2 + 1

�z2 )−1, where �x,
�y, and �z are grid spacings in Cartesian coordinates. In our numerical implementation,
following Tanaka (1994) we split the full magnetic-field vector [B] into the sum of a time-
independent potential magnetic field [B0] and a time-dependent deviation [B1], i.e. B =
B0 + B1, where B1 is calculated by the numerical scheme and B0 is reconstructed with
spherical harmonics based on the line-of-sight observations of the photospheric magnetic
field. In our AMR implementation of the present article, during the calculation, the values of
B0 on derefined or refined grid points are calculated from the spherical harmonics. However,
the time-dependent part B1 is involved in the updating procedure. It is generally believed that
solving for the deviation B1 from the embedded field B0 is inherently more accurate than
solving for the full magnetic-field vector B (Gombosi et al., 2003; Nakamizo et al., 2009;
Feng et al., 2010, 2011). Indeed, in our validation tests of the present article, these numerical
techniques enable us to maintain the ∇ · B error to an acceptable level of 10−6 and to avoid
negative pressure during the calculation.

The primitive variables ρ,v,p,B, r , and t in these equations are normalized by the char-
acteristic values ρs, as, ρsa

2
s ,

√
ρsa2

s ,Rs, and Rs/as, where ρs and as are the density and
ion–acoustic wave speed at the solar surface. Solar rotation is considered in the present
study with angular velocity |�| = 2π/27.2753 radian day−1 (normalized by as/Rs in simu-
lations). A factor of 1/

√
μ has been absorbed into the definition of B.

In order to achieve the observed pattern of fast and slow solar winds through MHD
simulations, researchers often add various kinds of heating terms into the MHD models.
The most commonly used heating methods are the Alfvén wave heating with Wentzel–
Kramers–Brillouin approximation, turbulence heating and volumetric heating. The Alfvén
wave heating method uses the idea of the energy and momentum interchange between the
solar plasma and the large-scale Alfvén turbulence to heat and accelerate the solar wind
(e.g., Mikić et al., 1999; Usmanov, 1996; van der Holst et al., 2010; Riley et al., 2011). The
turbulence heating method assumes that the additional energy is stored in the turbulent in-
ternal degrees of freedom, which is realized by using a phenomenological, thermodynamic
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model with a varied polytropic index (e.g. Roussev et al., 2003; Cohen et al., 2008; van der
Holst et al., 2010). In the volumetric heating method, the deposition of energy and/or mo-
mentum into the solar wind has been described by means of some empirical source terms
without explicitly specifying the physical mechanisms (e.g. Nakamizo et al., 2009; Lionello,
Linker, and Mikić, 2009; Feng et al., 2010). Here, the energy-source term Qe in the en-
ergy equation adopts the volumetric heating method, which is formulated in Feng et al.
(2010) with the help of the Wang–Sheeley–Arge (WSA) model (Wang and Sheeley, 1990;
Arge and Pizzo, 2000; Arge et al., 2003). This energy-source term takes account of the flux-
tube expansion factor [fs] and the minimum angular separation (at the photosphere) between
an open-field foot point and its nearest coronal hole boundary [θb , measured in degrees],
which have been used for the solar-wind study (Owens et al., 2008; Nakamizo et al., 2009;
Taktakishvili et al., 2011).

The solar-wind evolution is calculated in coordinates corotating with the Sun. In this
coordinate system we use (r, θ,φ) for the position of a point in solar-interplanetary space
and (x, y, z) is used to express its corresponding Cartesian coordinates, and the Cartesian
coordinates (x, y, z) and its corresponding spherical coordinates (r, θ,φ) will be referred to
alternatively. Sometimes, the analysis of computational results is carried out in the coordi-
nate system at rest in order to compare with the observations.

The calculations are performed between 1 Rs (i.e. the base of the corona) and 328 Rs. The
initial solar-surface temperature and number density are 1.3 × 106 K and 2.0 × 108 cm−3.
We employ the projected-normal characteristic inner boundary condition combined with the
mass flux escaping through the solar surface (Hayashi, 2005). Then the code is initialized
by using the potential magnetic field based on the line-of-sight measurements of the pho-
tospheric magnetic field from the Wilcox Solar Observatory (WSO) at Stanford University
for the CRs of interest and the Parker solar-wind solution. Finally, our model is run using
a time-relaxation method until a quasi-steady state is achieved. In fact, the same boundary
conditions and initial conditions given in Section 5 of Feng et al. (2010) are observed in the
present article.

The SIP–CESE MHD model has been developed by us in a series of articles (Feng, Zhou,
and Wu, 2007; Feng et al., 2010). Very recently, the CESE method for the MHD equations
in general curvilinear coordinates has been proposed and validated for some pure MHD
benchmark problems (Jiang et al., 2010). For the present article to be self-contained, in
what follows we present the main points of six-component grid and curvilinear coordinate
transformation from physical to reference coordinates in the context of solar-wind modeling.

3. Six-Component Grid and Curvilinear Coordinate Transformation

This section is devoted to the curvilinear coordinate transformation and six-component grid
in both physical space and reference space, where our CESE solver is applied. The six-
component grid introduced by Feng et al. (2010) for the solar-wind study decomposes the
spherical-shell computational domain into six identical component meshes with partial over-
lapping regions (Figure 1), each component of which is identically defined by a low-latitude
spherical domain

(
π

4
− δ ≤ θ ≤ 3π

4
+ δ

)
∩

(
3π

4
− δ ≤ φ ≤ 5π

4
+ δ

)
.

The parameter δ = �θ is determined by the grid spacing and layers of guard cells required
for the minimum overlapping area of two grid sizes. It should be mentioned that in 3D
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solar-wind modeling, Usmanov (1996) also introduced a composite mesh with the two polar
caps replaced by a rotated spherical grid. His composite mesh consists of three overlap-
ping spherical meshes. The first one is the usual spherical mesh with a limited extent in
latitude (42 ≤ θ1 ≤ 138◦,0 ≤ φ1 ≤ 360◦). The polar axis of the mesh is directed along the
solar-rotation axis. Two other meshes are introduced to cover the polar regions in both hemi-
spheres. These meshes are fragments of spherical coordinates (36 ≤ θ2,3 ≤ 144◦,26 ≤ φ2 ≤
144◦, and 216 ≤ φ3 ≤ 324◦) with the polar axis laying in the equatorial plane of the first co-
ordinate system (θ1 = 90◦, φ1 = 90◦). The differences between Usmanov’s composite grid
and six-component grid are that the six-component grid partitions the spherical shell into
six identical regions with the same metric and the component grids can be transformed into
each other by coordinate transformation such that the basic equations, numerical grid distri-
bution, and all numerical tasks are identical in the computational space. These attributes are
convenient to make efficient and concise programs and speed up the calculation. Different
from other grid mesh on which a numerical scheme is built, the six-component grid is just
the projection of our space–time grid system for the CESE scheme (Feng, Zhou, and Wu,
2007).

Actually, we use a six-component grid system in the physical space and each component
deals with the same grids, basic equations, and numerical tasks. Hence we do not have to
distinguish them and we only need to describe the grid partition and the associated coordi-
nate transform. Keep in mind that our physical space is in Cartesian coordinates (x, y, z)

or corresponding spherical coordinates (r, θ,φ) or solution variables defined in them, and
we will refer to them without distinguishing. In both θ and φ directions, the grid points are
even spaced such that �θ = �φ. However, in the r direction, a new variable λ is intro-
duced as a reference coordinate in reference space, which is exponentially related with r by
r = aλ, a = 1.481. In this way, the grid spacing [�r] in the r direction is always around r�θ

and r sin θ�φ (�θ is already chosen to be equal to �φ) by choosing �λ = loga(1 + �θ),
so that each grid cell is always approximately a cube. The sin θ term varies from 1 to 1/

√
2

within the six grid components, which shows that avoiding the singularity of the spheri-
cal grid indeed results in more regular cells. Thus, the curvilinear or reference coordinates
(ξ, η, ζ ) used in our CESE solver refer to (λ, θ,φ) here. Meanwhile, the grid cell in the
reference space (ξ, η, ζ ) is a rectangular box. In principle, any parameter a > 1 can be cho-
sen. In order to make the cells more regular in the physical space, we only need to choose
�λ = loga(1 + �θ) such that �r = aλ(a�λ − 1) = r�θ . We have no preference for select-
ing the parameter a, but the larger the parameter a, the denser the grid in the reference space,
which makes no difference due to the AMR implementation. We have tested many cases for
such a choice a ∈ [1.2,3], but have seen no difference in the numerical results. The choice
a = 1.481 is just a representative case for presenting our results here.

Initially, the computational domain in every reference component is divided into 14 ×
4 × 4 blocks with each block consisting of 6 × 6 × 6 cells. These correspond to Nθ = Nφ =
25 and �θ = π/48 by defining gird points on each component in physical space as θ�

j =
θmin + j�θ, j = 0,1, . . . ,Nθ +1, φ�

k = φmin + k�φ,k = 0,1, . . . ,Nφ +1 and �θ = (θmax −
θmin)/(Nθ − 1),�φ = (φmax − φmin)/(Nφ − 1), where Nθ and Nφ are the mesh numbers
of the latitude and longitude, respectively. θmin = π

4 , θmax = 3π
4 , φmin = 3π

4 , φmax = 5π
4 . The

innermost region is set on the solar surface at 1 Rs and the outermost region on the sphere
at 328 Rs, such that each component of the physical grids is equivalent to 0 ≤ ξ ≤ 14.75,
π/4 − δ ≤ η ≤ 3π/4 + δ, and 3π/4 − δ ≤ ζ ≤ 5π/4 + δ in the computational domain or
reference space, with �ξ = loga(1 + �θ), and �η = �ζ = δ = �θ = π

48 . To be specific,
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the transformation [J] between the coordinates of the reference space and the physical space
for one component reads as follows:

⎧⎨
⎩

x1 = aξ sinη cos ζ

y1 = aξ sinη sin ζ

z1 = aξ cosη

,

⎧⎪⎪⎨
⎪⎪⎩

ξ = loga

√
x2

1 + y2
1 + z2

1

η = arccos
(
z1/

√
x2

1 + y2
1 + z2

1

)

ζ = arctan(y1/x1)

. (2)

which will be denoted by x = x(ξ, η, ζ ), y = y(ξ, η, ζ ), z = z(ξ, η, ζ ) or ξ = ξ(x, y, z), η =
η(x, y, z), ζ = ζ(x, y, z). The Jacobian matrix of this nonsingular curvilinear coordinate
transform J is written as

J = ∂(x, y, z)

∂(ξ, η, ζ )
=

⎛
⎝

aξ sinη cos ζ lna aξ cosη cos ζ −aξ sinη sin ζ

aξ sinη sin ζ lna aξ cosη sin ζ aξ sinη cos ζ

aξ cosη lna −aξ sinη 0

⎞
⎠ , (3)

and its determinant is J = |J| = a3ξ sinη lna.
With the transformations (2), (3), and those of variables between components (Feng et al.,

2010; Jiang et al., 2010), we can get the corresponding transformation of coordinates be-
tween any two components or transformation of solution vector variables between the ref-
erence space and the physical space on an arbitrary component. The 3D MHD equations of
solar-wind plasma (1) in the reference coordinates (ξ, η, ζ ) read

∂Û
∂t

+ ∂F̂
∂ξ

+ ∂Ĝ
∂η

+ ∂Ĥ
∂ζ

− ∂F̂ν

∂ξ
− ∂Ĝν

∂η
− ∂Ĥν

∂ζ
= Ŝ, (4)

where Û, F̂, Ĝ, Ĥ, F̂ν, Ĝν, Ĥν , and Ŝ are given in Equation (21) by Jiang et al. (2010).
Note that Equation (4) is still written in conservation form, just like Equation (1). As a

result, the CESE solver for Equation (4) in the reference coordinate space (ξ, η, ζ ) can be
derived in the same way as that for Equation (1) according to Jiang et al. (2010). It should
be noted that transforming the governing equations of conservation laws into curvilinear
coordinates or new coordinates have been derived and used in constructing numerical algo-
rithms for years (e.g. Vinokur, 1974; Bridges, 2008). Here, we rewrite it again just for the
convenience of description.

With the CESE solver for both Equation (1) and Equation (4), we can easily take turns
between the physical-solution variables and the reference-solution variables. If the initial
input of the physical solution variables is given, we first use F, G, H, S to calculate the
fluxes F̂, Ĝ, Ĥ, Ŝ and apply the CESE solver to Equation (4) to obtain the reference-solution
variables Û and their first-order derivatives (Ûξ , Ûη, Ûζ ) at the new time step. Finally, we
can recover the physical solution variables U. Of course, we can reverse the above process
from the reference-solution variables to the physical-solution variables.

It is evident that the only difference between the CESE solver in Cartesian coordinates
and reference coordinates is the coordinate transformation J, and consequently the same
solver applies to both grid systems. Meanwhile, the present CESE solver in the reference
space (ξ, η, ζ ), formulated through the curvilinear transform from the physical space to the
reference space, solves the transformed MHD equations with rectangular box cells in a log-
ically Cartesian space, and the treatment of time iteration by integrating two half timesteps
into one full timestep can be seen as a one-step update that leads to low storage and makes
the scheme suitable building blocks for adaptive-mesh refinement calculations. These ad-
vantages greatly simplify the effective realization of numerical methods and allow us to
easily carry out the AMR implementation with the help of PARAMESH.
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4. AMR Implementation of SIP–CESE MHD Model

Here, we present some details of the AMR implementation of the SIP–CESE MHD model
on the six-component grid system (Figure 1) of the spherical-shell domain in solar-terrestrial
space. To accomplish this, all the ranks are classified into six groups, each of which corre-
sponds to one component grid system and deals with the same grid, basic equations, and
numerical task. Since our AMR is realized in the reference space (ξ, η, ζ ) and one com-
ponent grid in the physical space corresponds to one associated reference component gird,
the PARAMESH package decomposes every reference component (i.e., our computational
space) into many blocks of the same size, and organizes all the blocks in the whole com-
putational space (patched by the six reference components) into an oct-tree structure. In
our implementation, we store both the solution variables and their first-order derivatives
[Û, Ûξ , Ûη, Ûζ ] at each solution point, which have the number of variables nvf = 4 × 8 = 32.
The block size is set to 6 × 6 × 6 cells, with one layer of guard cells containing diagonal
elements. PARAMESH manages all the rectangular blocks, and does not need to distin-
guish which group the blocks belong to, such that we can directly use most of the default
operations provided by PARAMESH, such as the refining or coarsening of the blocks, pro-
longation, and restriction. Therefore, the data transferring and guard cell filling between
blocks can be automatically accomplished by the package without large modification. In
practice, the data exchange between these blocks in the same component is completed by
PARAMESH. However, the data exchange at overlapping layers between different compo-
nents adopt the third-order Lagrange interpolation. This, of course, will sacrifice the conser-
vation at the component interfaces. We have tested the code with a dipole, multiple magnetic
field and the observed magnetic field used in the present article as input to find that no spu-
rious reflections are observed from the grid interface. This may be due to the fact that the
conservative properties are more important to model shock waves either due to coronal mass
ejections (CMEs) or corotating interaction regions (CIRs) than to model smooth solar wind.

In solar-wind modeling, the topology of heliospheric current sheet is an important struc-
ture and thus only the curl of the magnetic field is used as our refinement strategy to cap-

ture the current sheet. The standard deviation about zero [τe =
√∑N

i=1 χ2
ei
/N ] is computed

for χe = V 0.5 |∇×B|
|B|+ε

√
p

and ε = 10−10 to set the thresholds of refining and coarsening grid
(De Zeeuw, 1993), with V being the spatial cell volume. When the maximum of this crite-
rion in a block is greater than κτe , this block is flagged to be refined, while if the maximum
in a block is less than ςτe, this block is flagged to be coarsened. κ and ς are selected ac-
cording to different physical time [tH in units of hours] intervals during the code’s running.
That is, when tH < 20, κ = 3 and ς = 0.1; when 20 ≤ tH < 50, κ = 6 and ς = 0.2; when
50 ≤ tH < 100, κ = 10 and ς = 0.3; when 100 ≤ tH < 160, κ = 15 and ς = 0.4; and when
tH ≥ 160, κ = 6 and ς = 0.1. With these settings, nine levels of grid refinement are used to
obtain a grid cell size of 0.015 Rs on the solar surface. The grid throughout the simulation
is refined to obtain a grid cell size of about 0.15 Rs near the current sheet within 20 Rs and
it is about 0.7 Rs near 1 AU. The maximum grid cell size is 1.3 Rs in the corona and 7 Rs in
the inner heliosphere.

As argued by Feng et al. (2010), the multiple time-stepping algorithm is implemented in
a six-component grid system with the radial direction decomposed into six subdomains: 1 –
10 Rs, 10 – 20 Rs, 20 – 50 Rs, 50 – 100 Rs, 100 – 170 Rs, and 170 – 328 Rs. Each subdomain
corresponds to one time step. We first calculate the smallest time step [�tmin] in the whole
domain. Then the smallest time step in each subdomain [�tq] is calculated. The time step for
each block in each subdomain [�tb] is taken to be the same as �tb = 2int(log2(�tq/�tmin)) ×�tq.
Finally, all of the blocks are advanced as done by Jiang et al. (2010).
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5. Numerical Validations

In this section, we will demonstrate the capability of the newly established 3D SIP–AMR–
CESE MHD solar-wind model to reproduce the observations both near the Sun and in inter-
planetary space during different solar-activity phases. The selected time intervals are Car-
rington rotation (CR) 1967 from 23:30 UT (universal time) on 02 September to 05:57 UT
on 30 September 2000, CR 2009 from 13:03 UT on October 23 to 20:20 UT on 19 Novem-
ber 2002, CR 2060 from 14:20 UT on 14 August to 20:18 UT on 10 September 2007, and
CR 2094 from 04:08 UT on 27 February to 11:44 UT on 26 March 2010. The four CRs
belong to the solar maximum, declining, minimum, and rising phases in Solar Cycles (SCs)
23 and 24, respectively, according to the monthly sunspot numbers, which are available at
http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt.

5.1. Comparisons with the Observation Near the Sun

Figure 2 presents the synoptic maps of the coronal holes from both observations and simu-
lations for CR 1967 (Column a), CR 2009 (Column b), CR 2060 (Column c), and CR 2094
(Column d). The first row presents the synoptic observations of the solar surface at 195 Å
taken with the Extreme ultraviolet Image Telescope (EIT) onboard Solar and Heliospheric
Observatory (SOHO), where coronal holes appear as dark areas of weaker coronal emission
due to lower density and temperature (Harvey and Recely, 2002). The second row shows the
open-field and closed-field regions from the SIP–AMR–CESE MHD model.

It is generally accepted that the areas and the distributions of the coronal holes are
different in different solar-activity phases. Seen from the observation and the simula-
tion in CR 1967, no polar coronal holes (PCHs) appear at either pole. In fact, this is
one of the most significant features before the completion of the reversal of the po-
lar field during solar-maximum phases (Waldmeier, 1981; Harvey and Recely, 2002;
Bilenko, 2002). Only a few isolated coronal holes (ICHs) scatter around Carrington lon-
gitudes of φ = 10◦, 100◦, 180◦, and 270◦ at the low- and middle-heliographic latitudes. We
should note that the simulated locations of the ICHs are roughly in agreement with the ob-
served ones but the total area of the ICHs from the simulation is a little smaller than that from
measurements. For CR 2009, in the declining phase, the EIT observation and the calculation
reveal that the PCHs tend to be asymmetric about both poles and that the two PCHs extend
equatorward across the solar Equator. The latitudinal median for the equatorial boundaries
of PCHs excluding the extending holes is about 74◦, and the lowest latitude is about −10◦
for the northern extending hole and 10◦ for the southern one. In CR 2060, the Sun was at its
minimum phase. The northern and southern PCHs are nearly symmetric about both poles.
In addition, two small ICHs appear near the solar Equator around φ = 230◦ and 350◦ from
both the observations and simulation, which was rare during previous solar minima and was
investigated thoroughly (e.g. Tokumaru et al., 2009; Wang, Robbrecht, and Sheeley, 2009;
Yang et al., 2011; Abramenko et al., 2010). Additionally, corona holes occupy the largest
area in the four selected CRs, which agrees with the finding of Harvey and Recely (2002).
The locations of the coronal-hole boundaries are almost the same as those derived from the
model of potential-field source-surface (PFSS) based on the photospheric magnetograms of
Mount Wilson Solar Observatory (Luhmann et al., 2009). With the end of the extended solar
minimum came the rising phase of SC 24. In CR 2094, both PCHs from the simulation and
observation shrink poleward rapidly and the simulated latitudinal median for the equatorial
boundaries of PCHs moves poleward from about 63◦ in CR 2060 to 68◦ in CR 2094.

Associated with the differences in shapes and areas of the coronal holes on the solar
surface among the four selected CRs, there also exist some corresponding distinctions near

http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt
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the Sun among them. Figure 3 shows the measured and computed synoptic maps at 2.5
Rs for CR 1967 (Column a), CR 2009 (Column b), CR 2060 (Column c), and CR 2094
(Column d). The first and second rows are the white-light polarized brightness (pB) images
at the east and west limbs from the Large Angle Spectrometric Coronagraph (LASCO)
C2 onboard SOHO. Each image in the third row superimposes the isolines of the radial
magnetic field on the contour map of the simulated number density [N ] and the fourth row
shows the contour maps of the radial speed [vr ]. In Row 4, the black solid lines denote the
magnetic neutral lines (MNLs). The most significant differences among the four CRs shown
in Figure 3 include the topologies of the MNLs and the distributions of the low-density, high-
speed (LDHS) plasma flows. In the simulation for CR 1967, the MNL along the longitudes
from 330◦ through 0◦ to 120◦ is almost coincident with the latitudinal circle of 60° N except
that there is a dip around 40◦ longitude and the MNL along the longitudes from 160◦ to 300◦

lies at the latitude of 60° S. As a result, the MNL around the longitudes of 130◦ and 320◦ is
nearly vertical and the heliosphere at low and middle latitudes is divided into two unipolar
regions according to the IMF polarities. The latitudes of the MNL from the simulation are
slightly smaller than those derived from Ulysses’ crossings of the sector structure when it
traveled from 80.2° S to 70° N (Smith et al., 2003, 2011). In addition, the LDHS regions
are confined to the small areas in the neighborhood of the longitudes of 0◦, 100◦ and 200◦

and the high-density, low-speed regions spread widely, which is in agreement with Ulysses
solar-wind observations (McComas et al., 2002, 2003). Therefore, the bright features can
be observed almost everywhere from the synoptic maps of pB measurements. However,
the bright structures in the pB map recorded in CR 2009 are roughly distributed around the
computed MNL, which lies at about 40° N from φ = 60◦ to 300◦ and 40° S from 240◦ to 20◦,
and changes abruptly near the longitudes of 40◦ and 220◦. It is obvious that the dark regions
in the pB maps are consistent with the distribution of calculated LDHS plasma flows, which
not only cover both poles, but also occupy the low- and middle-latitude regions around
the longitudes of 0◦, 100◦, and 200◦. The latitudinal span of the high-density, low-speed
solar wind is compatible with the measurements of solar-wind speed by Ulysses during this
CR (McComas et al., 2006). For CR 2060, the brightest streaks at both limbs in the pB
maps from LASCO-C2 are well organized around the wavy MNL, which is confined to low
latitudes near the solar Equator and extends northward to 25° N at φ = 160◦ and southward
to 15° S at φ = 230◦. Additionally, the percentage of the LDHS regions is highest among the
four CRs. As far as CR 2094 is concerned, the bright features in LASCO-C2 observations
can be seen at very broad latitudes due to the complex structure of the MNL, which displays
a pattern of two peaks and two valleys seen from the simulation. The two peaks are located
at (θ,φ) = (35◦,70◦) and (35◦,160◦). The narrow valley is located at (−25◦,100◦) and the
wide one at (−30◦,260◦). The median of equatorial boundaries for the LDHS plasma flows
from unipolar PCHs is about the latitude of 50◦ excluding the extending part of northern
PCH in the wide trough.

Now we investigate the states of the solar wind from 2.5 to 6 Rs. Figure 4 displays the
coronal observations and the simulated results for CR 1967 (Column a), CR 2009 (Col-
umn b), CR 2060 (Column c), and CR 2094 (Column d). The first four rows extract the
computed results on the meridional plane at φ = 0◦ – 180◦ and some related observations.
The first and second rows are the white-light pB images from 2.3 to 6 Rs recorded by
SOHO/LASCO-C2 and computed from the simulation, respectively. The LASCO-C2 data
are available at http://sharpp.nrl.navy.mil/cgi-bin/swdbi/lasco/img_short/form. The third row is
the simulated magnetic-field topologies projected on the meridional planes from 1 to 6 Rs.
The fourth row is the simulated radial solar-wind speed on the meridional plane from 1 to 6

http://sharpp.nrl.navy.mil/cgi-bin/swdbi/lasco/img_short/form
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Figure 4 The coronal observations and the simulation results on the meridional plane at φ = 0◦ – 180◦ for
CR 1967 (Column a), CR 2009 (Column b), CR 2060 (Column c), and CR 2094 (Column d). The first and
second rows are the white-light pB images from 2.3 to 6 Rs recorded by SOHO/LASCO-C2 and computed
from the simulation, respectively. The third row is the simulated magnetic-field topology projected on the
meridional planes from 1 to 6 Rs. The fourth row is the simulated radial solar-wind speed on the meridional
planes from 1 to 6 Rs, where the white quadrilaterals denote the grid blocks. The last row exhibits the
simulated current sheets from 1 to 6 Rs.

Rs, where the white quadrilaterals represent the blocks of different refinement levels show-
ing that the regions near the current sheet are identified by the grid resolution. The last row
exhibits the simulated three-dimensional current sheets from 1 to 6 Rs.

In CR 1967, the bright streaks extend at almost all latitudes in the images for both the
numerical results and the observations and the dark area in the southeast quadrant in the
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C2 observation results from the occulter’s pylon of the telescope. The brightest structures
extending farthest in CR 2009 lie just in the simulated streamers because most regions are
covered with the LDHS plasma flows, which can be clearly seen from the simulation. For
CR 2060, the current sheet is concentrated on the solar Equator and of limited latitudinal
excursion. The HCS during this period can be approximated as a flat plane, although the
HCS is not as conventional as those in previous minima (Tokumaru et al., 2009; Yang et al.,
2011) and slow solar winds span more latitude so that the spacecraft near the Earth sampled
fewer high solar-wind flows (Luhmann et al., 2009). Past studies have also revealed the
different shapes of HCS in different solar-activity phases. The HCS in the solar maximum
extends to very high latitudes (e.g. Cohen et al., 2008) and the HCS in the solar minimum is
almost coincident with the solar Equator (e.g. Mikić et al., 1999; Cohen et al., 2008; Feng
et al., 2010; van der Holst et al., 2010; Riley et al., 2011). During CR 2094, we can find
that the bright fan-like structures cover low and middle latitudes in both the observed and
synthesized pB images, and that the current sheet fluctuates with relatively large amplitude
and cannot be described as a nearly flat plane any more, which is similar to the simulated
HCS structure of CR 1934 by Mikić et al. (1999). We also notice that the solar-wind speeds
at six solar radii in our simulations are higher than those in van der Holst et al. (2010), which
probably results from the major acceleration region for our simulation being a little closer
to the Sun than that of the model by van der Holst et al. (2010).

5.2. Comparison with the Observation in Interplanetary Space

After discussing the coronal states of the four CRs near the Sun, we turn our attention to the
comparison between the simulated and observed results in interplanetary space.

The first row in Figure 5 displays the composite images of the isolines for the radial
speed [vr ] and the pseudo-color images of the mass-flux density [Fm] escaping through the
surface at 20 Rs. Row 2 displays the steady solutions in the solar equatorial plane for the
selected four CRs, and the white quadrilaterals suggest that the blocks of higher refinement
levels are clustering near the low-speed region, which means that the current-sheet structure
is well captured by the adaptive meshes. Rows 3 and 4 show the simulated proton number
densities [N ] and vr at 215 Rs. Columns (a), (b), (c), and (d) correspond to the results for
CRs 1967, 2009, 2060, and CR 2094. In those maps, the dashed green lines in the first row
and the black solid lines in the third and last rows denote the magnetic neutral lines.

Comparing Figures 3 and 5, we can see that for all the four CRs, the plasma flows of
vr ≥ 60 km s−1 at 2.5 Rs have been accelerated to the intermediate-speed solar winds (ISWs,
450 ≤ vr ≤ 700 km s−1) or fast solar winds (FSWs, vr ≥ 700 km s−1) of low mass-flux den-
sity at 20 Rs and the slow solar winds (SSWs, vr ≤ 450 km s−1) at 20 Rs of high density
basically surrounding the HCS originate from the plasma flows of vr ≤ 60 km s−1 at 2.5 Rs.
As a result, FSW covers the smallest area in CR 1967 and the largest in CR 2060. In addi-
tion, all SSW, ISW, and FSW have experienced an acceleration of about ≈50 – 100 km s−1

from 20 Rs to 215 Rs. The radial variations of the acceleration for different types of solar
wind beyond 2.5 Rs are consistent with those derived from both Ulysses solar-corona exper-
iment (Pätzold, Tsurutani, and Bird, 1997) and LASCO-C2 and C3 measurements (Wang
and others, 1998; Porfir’eva et al., 2009). The values of the mass-flux densities and solar-
wind speeds are of the same magnitude as those given by Wei et al. (2003), who analyzed the
global distribution of coronal mass output at 2.5 Rs and its relation to solar magnetic-field
structures by using observational data from K-coronal brightness. Additionally, the results
have also revealed the longitudinal deflections of the solar wind due to solar rotation and the
freezing-in effect of interplanetary magnetic field (IMF) by comparing the shapes of HCSs



222 X. Feng et al.

F
ig

ur
e

5
T

he
si

m
ul

at
ed

st
ea

dy
so

lu
tio

n
in

in
te

rp
la

ne
ta

ry
sp

ac
e

fr
om

th
e

M
H

D
m

od
el

fo
r

C
R

19
67

(C
ol

um
n

a)
,

C
R

20
09

(C
ol

um
n

b)
,

C
R

20
60

(C
ol

um
n

c)
,

an
d

C
R

20
94

(C
ol

um
n

d)
.

T
he

is
ol

in
es

of
th

e
ra

di
al

sp
ee

d
[v

r
:

km
s−

1
]

su
pe

ri
m

po
se

d
on

th
e

sy
no

pt
ic

ps
eu

do
-c

ol
or

im
ag

e
of

th
e

m
as

s-
flu

x
de

ns
ity

[F
m

:
10

8
km

s−
1

cm
−3

R
2 s
]

at
20

R
s

(R
ow

1)
,t

he
ps

eu
do

-c
ol

or
im

ag
es

of
th

e
ra

di
al

ve
lo

ci
ty

in
th

e
so

la
r

eq
ua

to
ri

al
pl

an
e

(R
ow

2)
,t

he
sy

no
pt

ic
co

nt
ou

rs
of

th
e

si
m

ul
at

ed
pr

ot
on

nu
m

be
r

de
ns

ity
[N

:c
m

−3
]

(R
ow

3)
an

d
v
r

[k
m

s−
1
]

(R
ow

4)
at

21
5

R
s.

T
he

w
hi

te
qu

ad
ri

la
te

ra
ls

in
R

ow
2

re
pr

es
en

tt
he

gr
id

bl
oc

ks
,w

he
re

th
e

bl
oc

ks
of

hi
gh

er
re

fin
em

en
tl

ev
el

s
ar

e
as

so
ci

at
ed

w
ith

th
e

re
su

lti
ng

A
M

R
gr

id
in

te
rs

ec
te

d
w

ith
th

e
so

la
r

eq
ua

to
ri

al
pl

an
e.

In
R

ow
s

3
an

d
4,

th
e

bl
ac

k
lin

es
de

no
te

th
e

m
ag

ne
tic

ne
ut

ra
ll

in
es

.



3D Solar Wind Modeling by SIP–AMR–CESE MHD Model 223

Figure 6 The calculated MHD steady state at 1 AU for CR 1967 (Column a), CR 2009 (Column b), CR 2060
(Column c), and CR 2094 (Column d). The first, second, third, fourth rows are the comparisons between the
MHD results and the one-hour averaged OMNI data near 1 AU for radial solar-wind speed [vr ], number
density [N ], temperature [T ], and radial magnetic field [Br ], respectively, where the green lines denote the
observations and the red lines represent the numerical results.

at different solar radii and the distribution of solar-wind speed on the solar equatorial plane.
The spirals coil more tightly in slow-speed flow than in high-speed flow, as pointed out by
Odstrcil and Pizzo (1999). The simulated results on the equatorial planes and at 215 Rs

display the structure of corotating interaction regions (CIRs) when the rear ISSs and FSSs
overtake the front SSWs, and at 215 Rs the CIRs are evident around φ = 160◦ and 340◦
in CR 2009, φ = 140◦ and 200◦ in CR 2060, and φ = 300◦ in CR 2094. It is interesting
to notice that for CR 2094 the two-peak and two-valley pattern of the HCS near the Sun
become less apparent and more regular near the Earth, due to the interaction between ISWs
and SSWs during their outward propagation.

Figure 6 demonstrates the calculated MHD steady solutions at 1 AU for CR 1967 (Col-
umn a), CR 2009 (Column b), CR 2060 (Column c), and CR 2094 (Column d). The rows
from top to bottom show the comparisons between the MHD results and the one-hour av-
eraged OMNI data near the Earth for radial solar-wind speed [vr ], number density [N ],
temperature [T ], and radial magnetic field [Br ], respectively. Roughly speaking, the steady
solutions from our model in Figure 6 can capture the observed changing trends of the solar-
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wind parameters in CR 1967, but all three peaks of solar-wind speed decline more slowly
than that observed, and have a bit higher speeds and proton number densities. For CR 2009,
the model shows two humps in the speed profile, which agrees well with the in-situ mea-
surements. However, it should be noted that the first simulated hump rises 1.5 days earlier.
The simulation shows the best consistency with the measurements during CR 2060. The
simulated maxima in the profiles of vr , N , and T and their arrivals match the observa-
tions reasonably well. The simulation gives a fairly good match in CR 2094 for the two
intermediate-speed flows observed from Day 12 to 15 and from Day 17 to 20, but the first
one arrives 2.5 days earlier. The relatively large discrepancy between the simulation and the
measurements during the first five and the last two days in CR 2094 should come from the
significant differences of the photospheric magnetic fields between the start and the end of
the CR. Generally speaking, the accuracy of our simulated solar-wind speeds is at the same
level as that for other models (e.g. Cohen et al., 2008; van der Holst et al., 2010; Riley et al.,
2011). From the plots of the radial magnetic field during the four CRs, we can see that the
IMF polarities and their changes are captured by our simulations with fairly good accuracy.
However, the simulated magnitudes are only one-third to one-half of those from OMNI data
for all four CRs, which exist in almost all 3D MHD models of steady and transient solar
winds by using the potential field as the initial state (e.g. Cohen et al., 2008; van der Holst
et al., 2010; Riley et al., 2011; Lugaz et al., 2011).

From the above comparisons, we can see that the simulated results both near the Sun
and in interplanetary space reproduce the observations much better for the solar minimum
and declining phases than those for the solar maximum and rising phases, which may result
from the fact the photospheric magnetic fields around the solar maximum and the rising
phase change so rapidly due to their evolution that the changes will cause considerable error
if we assume that they basically change little during a CR. Incorporating the daily updated
solar magnetograms into the present model may partially improve the situation (Mikić et al.,
1999; Arge and Pizzo, 2000). In addition, the discrepancies between the simulations and
the observations for the solar maximum and rising phases can partially be attributed to the
contaminations by the increasing number of coronal mass ejections.

6. Conclusions and Discussions

In this article, a new SIP–AMR–CESE MHD model is proposed by using our SIP–CESE
MHD model on six-component grid with AMR implementation in the context of reference
coordinates.

To summarize from the numerical point of view, we have three characteristics:

i) Through the use of the nonsingular transformation introduced here from the physical
space to the reference space, the quadrangular frustum pyramid cell for the spherical
shell computational domain for solar-wind modeling becomes the conventional rect-
angular box in the reference space (ξ, η, ζ ), which can be seen as the usual Cartesian
coordinate. Consequently, the AMR implementation of the code follows easily from
PARAMESH in Cartesian coordinate.

ii) More importantly, the transformed governing Equations (4) in the reference space
(ξ, η, ζ ) for the associated solar-wind plasma flows is still in conserved form. This
system can be seen as a PDE in Cartesian coordinates (ξ, η, ζ ) on each correspond-
ing component 0 ≤ ξ ≤ 14.75, π/4 − δ ≤ η ≤ 3π/4 + δ, and 3π/4 − δ ≤ ζ ≤ 5π/4 + δ.
Thus, besides the CESE scheme, many other modern numerical schemes in Cartesian
coordinates, such as the total variation-diminishing (TVD) scheme and the finite-volume



3D Solar Wind Modeling by SIP–AMR–CESE MHD Model 225

method (FVM), can be applied directly to the transformed system. This feature provides
many flexible alternatives for solving the transformed governing equations in (ξ, η, ζ )

and then recover the solution in the physical space through the transformation to ob-
tain the solar-wind solution. That is, many other successful solvers with AMR grids in
Cartesian coordinates can be employed as the solar-wind solvers in the context of the
present article.

iii) It should be noted that the same CESE solver applies to any coordinate system (such
as Cartesian, spherical, cylindrical coordinates, and any other curvilinear coordinates)
with only the difference of the coordinate transformation, and consequently the solver
proposed here is highly independent of the grid system.

Numerical validations through CRs 1967, 2009, 2060, and 2094 for the solar maximum,
declining, minimum, and rising phases are carried out by the newly developed 3D SIP–
AMR–CESE MHD model. The numerical simulations have reproduced many features near
the Sun during the corresponding solar activity phases. For CR 1967, no PCHs appear at
either pole, and only a few ICHs scatter at the low and middle heliographic latitudes. The
high-density low-speed regions can be observed everywhere. For CR 2009, LDHS plasma
flows from the simulation are coincident with pB measurements from LASCO-C2, and the
latitudinal span of the high-density low-speed solar wind is compatible with Ulysses’ mea-
surements of the solar-wind speed. The numerical results in CR 2060 have some differ-
ences from the previous minima demonstrated by other researchers (Tokumaru et al., 2009;
Yang et al., 2011). The MNL in CR 2094 displays the structure of two peaks and two val-
leys, which is also consistent with past results (Hoeksema, Wilcox, and Scherrer, 1983).
Many observed interplanetary structures have also been reproduced by the simulations. At
1 AU, the steady solutions from our model have captured the observed changing trends of
the solar-wind parameters for all four CRs, except that some peaks of solar-wind speed de-
cline more slowly and arrive no more than three days earlier than observed. In addition, the
IMF polarities and their changes are captured by our simulations with fairly good accuracy.

On the one hand, our model can reproduce most of the observed features among the
four selected CRs, which are essentially determined by the photospheric magnetic fields,
especially their dipole and quadrupole components (Sanderson et al., 2003) and the polar
open fields (Wang, Robbrecht, and Sheeley, 2009); on the other hand, we should also note
that there exist some differences between the numerical results and observations, such as the
magnitude of radial magnetic fields and arrival times of ISWs at the Earth.

Differences occur due to many factors such as the following.

i) The challenging problem of coronal heating and solar-wind acceleration is far from be-
ing realistically solved by the specified volumetric heating source term although the
topological effect of magnetic field with the expansion factor [fs] and the angular dis-
tance [θb] is considered and, to some extent, can effectively distinguish the high-speed
solar wind from the low. 3D two-fluid MHD models, including the effects of different
temperatures for protons and electrons in collisionless solar wind (Cranmer et al., 2009;
Cranmer, 2010; van der Holst et al., 2010), may improve the simulated plasma param-
eters of the solar wind. The true physics for the coronal heating/solar-wind acceleration
mechanism has to be consolidated as a module in the 3D code in order to better achieve
the ambient solar wind. Recently, Wang et al. (2011) have shown that incorporating both
the line-of-sight magnetic field and transverse velocity into an MHD simulation enables
us to obtain bimodal solar wind without any specified the heating function.

ii) The uncertainties of photospheric (especially polar) magnetic measurements and of the
potential magnetic field are also important factors leading to the differences between the
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observations and numerical results. Although our model is able to reproduce the loca-
tions of the coronal-hole boundaries in EIT measurements, the magnitude of open flux
tends to be low compared with the in-situ measurements at 1 AU, and the discrepancy be-
comes greater around solar maximum when the in-situ IMF can be almost twice as strong
as in our model. A great deal of research has revealed that a significant portion of the
heliospheric open magnetic flux originates from active regions and coronal mass ejec-
tions by means of interchange reconnections (Fisk, Schwadron, and Zurbuchen, 1999;
Owens and Crooker, 2006; Riley, 2007; Cohen et al., 2008; Yeates et al., 2010a), which
cannot be captured by the potential-field approximation. In addition, the occurrence of
some coronal mass ejections (CMEs) during the simulated period and the interaction
between solar wind and interplanetary discontinuities, which have been neglected in our
model, may also affect the variation trends of solar-wind parameters.

Due to the above-mentioned considerations, several topics need our future attention.

i) Use a more realistic magnetic-field models’ output or continuously updated observed
photospheric magnetic field as input to drive the ambient solar wind, such as by using
non-potential magnetic field model for the Sun’s open magnetic flux (e.g. Yeates et al.,
2010a), surface flux transport (e.g. Baumann, Schmitt, and Schüssler, 2006; Cameron
et al., 2010; Yeates et al., 2010b), and the synchronic frame format of the solar photo-
spheric magnetic field (e.g. Hayashi, Zhao, and Liu, 2008; Zhao, Hoeksema, and Scher-
rer, 2010, private communication). The projected normal characteristic boundary con-
ditions for such purpose is being established by us in order to improve the time-varying
boundary input.

ii) Try a data-driven solar-eruption study by continuously observed data by following the
method proposed by Wu et al. (2006) and Wang et al. (2011). With the AMR–CESE 3D
MHD solver available here, continuously observed 3D magnetic field by SOHO/MDI or
SDO/HMI become probable as time-dependent boundary input to drive a solar eruptive
event.

iii) Consider developing more comprehensive codes to include the models for the lower
solar atmospheric layers with the effects of the solar dynamo (e.g. Charbonneau, 2005;
Hoeksema, 2009) as well as the interchange reconnection in the MHD governing equa-
tions.
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Kóta, J., Liewer, P.C., Luhmann, J.G., Inhester, B., Schwenn, R.W., Solanki, S.K., Vasyliunas, V.M.,
Wiegelmann, T., Blush, L., Bochsler, P., Cairns, I.H., Robinson, P.A., Bothmer, V., Kecskemety, K.,
Llebaria, A., Maksimovic, M., Scholer, M., Wimmer-Schweingruber, R.F.: 2008, Theoretical modeling
for the STEREO mission. Space Sci. Rev. 136, 565.

Baumann, I., Schmitt, D., Schüssler, M.: 2006, A necessary extension of the surface flux transport model.
Astron. Astrophys. 446, 307.

Bilenko, I.A.: 2002, Coronal holes and the solar polar field reversal. Astron. Astrophys. 396, 657.
Bridges, T.J.: 2008, Conservation laws in curvilinear coordinates: A short proof of Vinokur’s theorem using

differential forms. Appl. Math. Comput. 202, 882.
Cameron, R.H., Jiang, J., Schmitt, D., Schüssler, M.: 2010, Surface flux transport modeling for solar cycles

15-21: Effects of cycle-dependent tilt angles of sunspot groups. Astrophys. J. 719, 264.
Charbonneau, P.: 2005, Dynamo models of the solar cycle. Living Rev. Solar Phys. 2, 2. http://solarphysics.

livingreviews.org/Articles/Irsp-2010-3/.
Cohen, O., Sokolov, I.V., Roussev, I.I., Gombosi, T.I.: 2008, Validation of a synoptic solar wind model.

J. Geophys. Res. 113, A03104.
Colella, P., Graves, D.T., Keen, N.D., Ligocki, T.J., Martin, D.F., McCorquodale, P.W., Modiano, D.,

Schwartz, P.O., Sternberg, T.D., Van Straalen, B.: 2007, Chombo software package for AMR appli-
cations design document. Technical report, Applied Numerical Algorithms Group, NERSC Division,
Lawrence Berkeley National Laboratory Berkeley.

Cranmer, S.R.: 2010, An efficient approximation of the coronal heating rate for use in global Sun-heliosphere
simulations. Astrophys. J. 710, 676.

Cranmer, S.R., Matthaeus, W.H., Breech, B.A., Kasper, J.C.: 2009, Empirical constraints on proton and
electron heating in the fast solar wind. Astrophys. J. 702, 1604.

De Zeeuw, D.L.: 1993, A quadtree-based adaptively refined Cartesian-grid algorithm for solution of the Euler
equations. PhD thesis, Ann Arbor, MI, USA. UMI Order No. GAX94-09674.

Dryer, M.: 2007, Space weather simulation in 3D MHD from the Sun to the Earth and beyond to 100 AU:
A modeler’s perspective of the present state of the art. Asian J. Phys. 16, 97.

Feng, X., Zhou, Y., Wu, S.T.: 2007, A novel numerical implementation for solar wind modeling by the
modified conservation element/solution element method. Astrophys. J. 655, 1110.

Feng, X.S., Xiang, C.Q., Zhong, D.K.: 2011, The state-of-art of three-dimensional numerical study for
corona-interplanetary process of solar storms. Sci. Sin.-Terr. 41, 1 (in Chinese).

Feng, X., Yang, L., Xiang, C., Wu, S.T., Zhou, Y., Zhong, D.: 2010, Three-dimensional solar wind modeling
from the Sun to Earth by a SIP–CESE MHD model with a six-component grid. Astrophys. J. 723, 300.

Feng, X., Zhang, S., Xiang, C., Yang, L., Jiang, C., Wu, S.T.: 2011, A hybrid solar wind model of the
CESE+HLL method with a Yin-Yang overset grid and an AMR grid. Astrophys. J. 734, 50.

Fisk, L.A., Schwadron, N.A., Zurbuchen, T.H.: 1999, Acceleration of the fast solar wind by the emergence
of new magnetic flux. J. Geophys. Res. 104, 19765.

Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P., Rosner, R., Tru-
ran, J.W., Tufo, H.: 2000, FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical
thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273.

Garaizar, X., Hornung, R., Kohn, S.: 1999, Structured adaptive mesh refinement applications infracture. Tech-
nical report, Lawrence Livermore National Laboratory.

Gombosi, T.I., De Zeeuw, D.L., Powell, K.G., Ridley, A.J., Sokolov, I.V., Stout, Q.F., Tóth, G.: 2003, Adap-
tive mesh refinement for global magnetohydrodynamic simulation. In: Büchner, J., Dum, C., Scholer,
M. (eds.) Space Plasma Simulation, Lecture Notes in Physics 615, Springer, Berlin, 247.

Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31.
Hayashi, K.: 2005, Magnetohydrodynamic simulations of the solar corona and solar wind using a boundary

treatment to limit solar wind mass flux. Astrophys. J. Suppl. Ser. 161, 480.
Hayashi, K., Zhao, X.P., Liu, Y.: 2008, MHD simulations of the global solar corona around the Halloween

event in 2003 using the synchronic frame format of the solar photospheric magnetic field. J. Geophys.
Res. 113, 7104.

Hoeksema, J.T.: 2009, Evolution of the large-scale magnetic field over three solar cycles. In: Kosovichev,
A.G., Andrei, A.H., Roelot, J.P. (eds.) IAU Symposium 264, Cambridge University Press, Cambridge,
222.

http://solarphysics.livingreviews.org/Articles/Irsp-2010-3/
http://solarphysics.livingreviews.org/Articles/Irsp-2010-3/


228 X. Feng et al.

Hoeksema, J.T., Wilcox, J.M., Scherrer, P.H.: 1983, The structure of the heliospheric current sheet: 1978–
1982. J. Geophys. Res. 88, 9910.

Jiang, C., Feng, X., Zhang, J., Zhong, D.: 2010, AMR simulations of magnetohydrodynamic problems by the
CESE method in curvilinear coordinates. Solar Phys. 267, 463.

Linde, T.: 2002, MHD simulations with the FLASH code. APS Meeting Abstracts, F3005.
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