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The application of the AMR–CESE method for solving the Euler and Navier–Stokes equations is presented.
The method is a combination of the space–time conservation element and solution element (CESE)
method and the adaptive mesh refinement (AMR) technique. Its implementation is based on modification
of the original CESE method and utilization of the framework of a parallel-AMR package PARAMESH to
manage the block-AMR grid system. Furthermore, a variable time step algorithm is introduced to realize
adaptivity of the method in both space and time. A test suite of standard problems for Euler and Navier–
Stokes flows are calculated and the results show high resolution, high efficiency and versatility of the
method for both shock capture and resolving boundary layer.
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1. Introduction

Adaptive mesh refinement (AMR) is an attractive avenue in
modern CFD as a compromise between high resolution require-
ment and computational resource limitation. By automatically
adapting the computational mesh to the solution of the governing
partial differential equations (PDEs), methods based on AMR can
assign more mesh points for regions demanding high resolution
(e.g., high gradient regions) and at the same time, give fewer mesh
points to other less interesting regions (low gradient regions),
thereby providing the required resolution while minimizing mem-
ory requirements and CPU time. AMR technique has been develop-
ing rapidly since the pioneering work by Berger and Colella [1], and
combined with the parallel computation technique, it is becoming
a standard tool for treating problems with multi-orders of spatial
or temporal scales. Up to now, there have been a number of soft-
ware infrastructures developed to support the parallel-AMR imple-
mentation of PDEs. These include AmrLib/BoxLib [2], Chombo [3],
DAGH [4], GrACE [5], SAMRAI [6] and PARAMESH [7].

PARAMESH, a package of Fortran 90 subroutines, is designed to
provide an application developer with an easy route to extend an
existing serial code which uses a logically Cartesian structured
mesh into a parallel code with AMR [7]. The package builds a hier-
archy of sub-grids (i.e., blocks) to cover the computational domain,
with spatial resolution varying to satisfy the demands of the appli-
cation. Each grid block has the same logically Cartesian mesh with
different spatial scale. Between the blocks, only jumps of a factor of
ll rights reserved.

ang).
two in resolution are allowed. These sub-grid blocks form the nodes
of a tree data structure (quad-tree in 2D or oct-tree in 3D), which is
convenient to organize the blocks and their relationships. The
adaptation of the solution is realized by dynamically dividing
(refining) and coarsening appropriate blocks when running. The
package is fully parallelized on the share-memory parallel
computer using the message passing interface (MPI) library. Due
to the high performance and usability of this publicly available tool-
kit, it has been utilized for management of the AMR grid system and
parallelization in many codes, including the AMR–MHDFCT, ATHE-
NA and FLASH in the astrophysics community [7–9], and available
on the website http://www.physics.drexel.edu/olson/paramesh-
doc/Users_manual/amr.html. In the framework of PARAMESH,
what the user need to provide includes: (1) a runtime parameter file
containing the basic configurations; (2) a main control program; (3)
a subroutine of refinement criteria to test the refinement or de-
refinement of the blocks; (4) boundary conditions and (5) the final
but the most important one, a solver working on one single block.

With the help of PARAMESH, the AMR–CESE method as its name
implies, is an implementation of the space–time conservation ele-
ment and solution element (CESE) method on the AMR grid [10].
The CESE method, originated by Chang [11,12], is a relatively novel
but successful scheme for conservation laws. Different from the
traditional numerical methods, the key principle of the CESE meth-
od is treating space and time as one entity in calculating flux bal-
ance. It is a genuine multidimensional and high-resolution scheme
without any type of dimensional splitting and Riemann solver. In
the CESE method, the first-order spatial derivatives are also consid-
ered as variables to be solved. By designing the solution element
(SE) and conservation element (CE), the CESE method allows the
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Fig. 1. The CESE scheme in 2D; the projection of the mesh points in E3 onto the x–y

106 C. Jiang et al. / Computers & Fluids 54 (2012) 105–117
physical parameters to have smooth profiles inside a SE, while be-
tween SEs or in CEs, they may be discontinuous. Thus, the CESE
method can capture sharp discontinuity within a few grid points,
and in addition, the introduced numerical damping effect in this
method is controllable. The CESE method has been applied to many
fields ranging from hydrodynamics to magnetohydrodynamics
including the viscous and invisid flows and the capabilities are
well-established [12–16]. Combining such an excellent scheme
with the AMR technique is valuable and of significance for many
applications considering both of their merits. In our previous work,
the AMR–CESE method is proposed and applied to magnetohydro-
dynamics and the advantages have emerged [10,17].

In this paper, we report solving the conservation laws of the Eu-
ler equations and Navier–Stokes (NS) equations using the AMR–
CESE method. This is a further application and examination of
the method and serves an extension of our previous work [10] with
some more issues addressed. The paper is organized as follows.
Firstly a brief summary of our realization of the AMR–CESE method
is given in Section 2 after presenting the governing equations to be
solved. Then we provides a suite of numerical tests for both the Eu-
ler and NS equations in Section 3 with relevant discusses. Finally
we offer concluding remarks in Section 4.

2. The AMR–CESE method

2.1. The governing equations

We aim at solving the time-dependent Euler and Navier–Stokes
(NS) equations. In conservation form, the non-dimensionalized
equations can be written as

@U
@t
þ @F
@x
þ @G
@y
� @Fm

@x
� @Gm

@y
¼ 0 ð1Þ

where the flow variables (U) and inviscid fluxes (F,G) are

U ¼ ðq;qv; EÞT ¼ ðq;qvx;qvy; EÞT ; ð2Þ
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The viscous fluxes (Fm,Gm) are set to be zero for Euler equations.
For NS equations they are
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0
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0
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respectively. Here q, p, v are density, pressure and velocity with
components (vx,vy). The specific total energy is E ¼ p=ðc� 1Þþ
q v2

x þ v2
y

� �
=2 and c is the ratio of the specific heats. The stress

components in Eq. (4) are as follows,
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where l is the viscosity coefficient, Re is the Reynolds number, Pr is
the Prandtl number and M is the freestream Mach number. T is the
temperature and given by the equation of state cM2p = qT. Accord-
ing to the Sutherland’s law, the viscosity coefficient is

l ¼ T1:5 1þ Ts=T0

T þ Ts=T0
ð6Þ

with the Sutherland temperature Ts = 110 K and the reference tem-
perature T0 = 298 K. Since in the CESE method the gradients of flow
variables (Ux,Uy) are also included as the solution variables besides
U, the viscous fluxes can be expressed as functions of U, Ux, Uy.

2.2. The improved CESE method

Two modifications are brought to the original CESE method
here for the purpose of application on the block-AMR grid system.
As the first one, we rearrange the space–time solution points in an
uniform rectangular mesh as shown in Fig. 1. The spatial domain is
divided into rectangular meshes evenly, with i, j and n as the indi-
ces for x, y and t, respectively. Here, the projections of the solution
points onto the x–y plane are directly given on the mesh nodes. The
mesh nodes marked by filled circle such as A, B, C and D belong to
solution points at time level n � 1/2 and the open-circle points like
G belong to the time level of n, with the time interval of Dt/2. This
is more convenient than the original method where the CESE solu-
tion points must be calculated after setting the grids. The reason is
that here for any rectangular, e.g., ABCD, its centroid is explicitly
the center point, e.g., G. We note that such improvement is also
adopted in [18,19], and we have extended it to the three-
dimensional case in a more general way [10].

The modification can further show its advantages when defin-
ing the solution element and conservation element and advancing
the solutions (Fig. 2). The solution element, for instance, of G0 is
defined as the union of three planes A0B0C0D0, W00E00EW, S00N00NS,
which intersect at G0 and are perpendicular to each other.
Similarly, the conservation element used for solution advancing
at G0 is the cuboid of ABCDA0B0C0D0 since G0 is the centroid of
A0B0C0D0. The CESE method advances the solution at G0 by balancing
the total space–time fluxes leaving through the surface of the CE,
using a general version of the Gauss’s divergence law in the
three-dimensional Euclidean space E3 of (x,y, t),I

SðVÞ
hm � ds ¼

Z
V
r � hmdV ¼ 0: ð7Þ

Here m = 1, 2, 3, 4 denotes the components,
hm = (Fm � Fmm,Gm � Gmm,Um) is the space–time flux vector, S(V) is
plane.



Fig. 2. The CESE scheme in 2D; definitions of CE and SE.
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the boundary of the space–time volume V in E3, and hm � ds is the
space–time flux leaving through the surface element ds.

Now, unlike the original method, note that the surfaces of the
CE are parallel to the coordinate planes. Consequently, the integra-
tion of fluxes leaving through the surface of the CE is greatly
simplified, as the normal vector of each face is along the
corresponding axis and only one component of the spacetime flux
vector is needed on each face. This will reduce the CPU time
significantly as majority of the computation time in the CESE
method is consumed by the flux integration. The simplification
stands out especially for the three-dimensional case [10].

After setuping the above basic ingredients of the CESE method,
the CESE advancing routine for flow variables U can be derived
straightforwardly, and we simply present the final formula here

ðUmÞni;j ¼
1

DxDy

X
p¼�1;1;q¼�1;1

� DxDy
4

ðUmÞn�1=2
ip;jq þ ðUmxÞn�1=2

ip;jq �p
Dx
4

� �
þ ðUmyÞn�1=2

ip;jq �q
Dy
4

� �� �
� p

� DyDt
4

ðFm � FmmÞn�1=2
ip;jq þ ðFmyÞn�1=2

ip;jq �q
Dy
4

� �
þ ðFmtÞn�1=2

ip;jq

Dt
4

� �� �
� q

� DxDt
4

ðGm �GmmÞn�1=2
ip;jq þ ðGmxÞn�1=2

ip;jq �p
Dx
4

� �
þ ðGmtÞn�1=2

ip;jq

Dt
4

� �� �
;

ð8Þ

where ip = i + p/2, jq = j + q/2 for short and the subscripts x, y and t
denote the corresponding derivatives as usual in descriptions of
the CESE method [13,14,10]. For computations of the spatial
gradients of the flow variables, Ux and Uy, the similar procedures
of finite-difference and reweighting of an a type are used. In the
present work for solving the Euler equations, we set a = 2 and for
NS equations, we set a = 0, which is equivalent to central-difference
when calculating the spatial gradients.

The second modification is a minor one by merging two half
timesteps into one full timestep with the variables of time level
n reserved only. That is because for the case of the grid system with
an AMR algorithm, variables on new child blocks generated by
refinement are prolonged from their underlying parent blocks
using spatial interpolation. On the other hand if a block is coars-
ened, variables on the relevant child-blocks are restricted back to
their parent. Such operations (prolongation and restriction) must
be done on data of the same time level. This requirement can be
realized by hiding the intermediate time level n + 1/2 in the
subroutine of CESE solver, which only provides the interface for
the solution of time level n with integer numbers. Note that in this
way, the scheme can be regarded as a nine-point (3 � 3) stencil
with diagonal points in two-dimension, and no space–time stag-
gering exists.
2.3. AMR implementation

2.3.1. The basic configuration
With the CESE solver well prepared, we integrate it into the

framework of the PARAMESH code. In details for the basic
configuration:

(1) we specify all the solution variables (U,Ux,Uy) at cell center,
with the number of variables nvar = 4 � 3 = 12 defined in
PARAMESH.

(2) The blocks are set to consist of 8 � 8 cells, typically, to
enable easy load balance and flexible AMR. One layer of
guard cells containing diagonal elements is specified for
the nine points stencil. The guard cells are used for commu-
nications between the neighboring blocks.

(3) The linear interpolation is used when prolonging the data
from parent blocks to their new born child blocks and aver-
age is used when restricting data on child blocks back to
their parents. The same interpolation is used when filling
guard cells at block boundaries next to less refined neighbor
blocks. The prolongation and restriction are carried out also
on the variable gradients (Ux,Uy) which make our scheme
much different from the AMR implementations on finite vol-
ume scheme.

2.3.2. Refinement criteria
Then a set of refinement criteria is needed for the program to

decide which blocks required to be refined or de-refined (i.e.,
coarsened) when running. Although several approaches are possi-
ble, in this work, we use multiple physics-based refinement criteria
[20–23]. They are the curl and divergence of velocity and the gra-
dients of density and pressure, giving the refinement criteria com-
puted for each cell as

vd ¼
ffiffiffiffi
V
p jr � vj
jvj þ �a ; vc ¼

ffiffiffiffi
V
p jr� vj
jvj þ �a ;

vq ¼
ffiffiffiffi
V
p jrqj

q
; vp ¼

ffiffiffiffi
V
p jrpj

p
: ð9Þ

Here V is the cell volume, a ¼ c
ffiffiffiffiffiffiffiffiffi
p=q

p
is the sound speed and a

factor �� 1 is introduced to get rid of the concern when v is equal
to zero. These criteria can detect all distinctive features in the flow,
like the shock, the shear layer, the vortex and the contact disconti-
nuity [23]. Different combination of these criteria can be used for
particular purpose. It is worth noting that the quantities in Eq.
(9) can be directly obtained by using the solution gradients (Ux,Uy)
without any finite-difference.

For a given combination of these criteria, the program tests each
block in the following way. If any of the maxima of the criteria in
the combination is greater than the threshold for refinement, the
block is flagged to be refined, while if all of the maxima of these
criteria are less than the threshold for coarsening, the block is
flagged to be coarsened. In order to set the thresholds, the standard
deviation about zero is computed for each v [21]:

rR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 v2

R

	 

i

N

s
; ð10Þ

with i pertaining to the indices of all of cells in the computation
domain and R denoting the subscripts in Eq. (9). Multiplying each
r by different, properly chosen factors gives the thresholds.
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2.3.3. Variable timestep
By now, the implementation of the CESE method on AMR grid is

established for the uniform-timestep scheme that using a uniform
timestep Dt globally in each advancing step. However, if defining
the block local timestep Dtb by using the local grid size DLb, a fixed
Courant number CFL and the global maximal wave speed vmax as

Dtb ¼ CFL
DLb

vmax
; ð11Þ

it varies significantly due to the intrinsic variation in resolution of
the AMR grid. In such situation, using an uniform finest timestep
for the CESE method can produce excessive numerical diffusion
for the region with relatively low resolution. Since the numerical
diffusion of the CESE method is sensitive to the ratio of the timestep
to the grid size (or the local timestep), especially when this ratio is
smaller than 0.1 [24,25]. That is very common in the AMR grid with
typically four or five levels of refinement used and the resulting
numerical dissipation is in particular unfavorable for the viscous
flows with high Reynolds number.

On an ordinary non-uniform grid the sensitivity of the CESE
method to the timestep can be partially overcome by a Courant
number insensitive (CNIS) scheme [24]. A more effective and
suitable method on the block-AMR grid is a variable timestep
algorithm, which is using the local timesteps directly on the blocks.
This kind of method can reduce the numerical diffusion more
thoroughly than the CNIS scheme, and furthermore, save the
computation resource effectively by avoiding the unnecessary
fine-steps of solution advancing on the coarser blocks. Similar
procedures of using local time stepping in the CESE method can
also be found in [26,27].

Here we give a short description of our variable timestep algo-
rithm [10]. We group the blocks by their local timesteps with each
group of blocks having the same timestep. Actually, the group can
also be defined by the refinement level. In Fig. 3, for instance with
three refinement levels used, the blocks are divided into three
groups with timesteps of Dt1, Dt2 and Dt3, respectively, and
Dt1 = 2Dt2 = 4Dt3. Correspondingly, the groups are name as group
1, group 2 and group 3. The figure shows one complete advancing
step before the modification of the grid by the refine-derefine
procedure. The color arrows represent one step of solution advance
of a given group, and the groups with the same color can be
advanced simultaneously. The black arrows denote the necessity
of time interpolation of solution when guard cell filling. That is
at the interface of timestep jump, linear time interpolation from
1

2

3

0 5dt.

Fig. 3. The scheme of variabl
the larger-timestep block is used to set guard cell values when
needed on the block with the finer timestep. The grid will not be
modified until all blocks have been advanced through the biggest
timestep Dt1.

2.3.4. Global conservation
In principle, the global conservation should be preserved in

solving the conservation laws, which needs some additional
considerations on AMR grid (e.g., using flux correction for finite-
volume methods as used by Berger and Colella [1] and conservative
prolongation). In the present implementation of CESE on AMR grid,
the global conservation cannot be fulfilled strictly because of two
non-conservative operators. One is the linear prolongation and
the other one is the guard cell filling at the interfaces of blocks with
different space–time resolutions. Even so, our previous MHD
results are satisfactory by using these simple operators [10]. We
also note that in the work of Henshaw and Schwendeman [28]
where the AMR algorithm is used combining with the overlapping
grid method (which is another factor for non-conservation), good
results are obtained without considering the global conservation.
Actually in the present circumstances the strictly global conserva-
tion does not mean that importance as it seems for the following
reasons.

It is true that conservativeness is critical for discontinuity-
capture schemes to obtain the correct weak solution, since the
Rankine-Hugoniot relations must be satisfied crossing the discon-
tinuity. However, the discontinuity is local and the conservation
satisfied locally near the discontinuity is adequate. Provided with
a set of good refinement criteria, the AMR grid system can always
enclose the discontinuities within bands of blocks at the same
refinement level, usually the highest level, with enough buffers
(see Fig. 4 for example). In this way, it seems that the blocks close
to the discontinuities are driven to move in the same manners as
moving of the discontinuities (actually it is not the block itself
but the mesh resolution that moves), and the discontinuities them-
selves never pass or straddle the resolution interfaces throughout
the computation. In other words, for a given discontinuity once
formed, it only ‘feels’ the mesh of the same resolution without
‘knowing’ the existence of the dynamically, varying-resolution grid
system. This avoids the two non-conservative operators in the
bands of blocks that encompass the discontinuities, since child
blocks are created or destroyed only at the edges of the buffer zone.
Then the CESE solver can advance the solutions crossing the
discontinuity just like in the uniform grid and thus the local
1dt

e timestep: an example.



Fig. 4. An example for the discontinuity capture by the AMR grid. The curved line represents the discontinuity and each cell here represents one grid block that consists of
8 � 8 cells. This grid is extracted from the two-dimensional blast wave problem (Section 3.2): left shows the initial shock and right shows the shock at the end of the
computation. Note that the grid resolution evolves in the same manners as the shock moves and well enclosing of the shock by blocks at the highest refinement level.
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conservation is still preserved. In this respect, what is more
important is the design of good refinement criteria that can direct
the variation of the grid resolution effectively and pave the way in
advance for the formation and movement of discontinuities.

2.4. Boundary conditions

At last for the sake of completeness, we address all the bound-
ary conditions used for the following numerical tests (Section 3).
There are four types including the inflow condition, the outflow
condition, the slip and non-slip wall conditions. Since the compu-
tational domain consists of cells and the solutions are represented
at the cell centers, the boundary conditions are specified by di-
rectly assigning values at the guard cells that abut the boundary
faces. This is a great simplification of the boundary procedure from
the original method where one should consider the space–time
staggering nature of the points at the boundaries. Denote the solu-
tions at these guard cells as U0;U0

x ;U
0
y

� �
and solutions at their

immediately neighboring cells inside the domain as U1;U1
x ;U

1
y

� �
.

Using the lower y-boundary as an example, the boundary condi-
tions are given as follows.

(1) For the the inflow condition, U0 is assigned by the given
inflow values and the gradients are set to be U0

x ¼ U0
y ¼ 0.

(2) For the outflow condition, U0 ¼ U1;U0
x ¼ U1

x and U0
y ¼ 0.

(3) For the slip wall condition, also named as the reflecting
boundary condition, the values are given first in the form
of the primitive values as
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; ð12Þ
and then transformed to the solution variables.
(4) For the non-slip wall condition with the wall speed of vx = vd,
ðq;vx; vy;pÞ0 ¼ ðq;2vd � vx;�vy; pÞ1;
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For other faces, all these types of boundary conditions can be
derived in the similar way.
3. Numerical results

To validate the AMR–CESE method and demonstrate its capabil-
ities, a suite of test benchmarks are calculated. The problems are
chosen with the first three for Euler equations and the rest for
NS equations. The specific heat ratio c = 1.4 and the Prandtl num-
ber Pr = 0.72 are given in the tests when needed. We use the full
set of the refinement criteria in Eq. (9) for these problems if with-
out special explanation.
3.1. Sod shock-tube problem

The Sod shock-tube problem [29] is commonly used for code
validation. The initial values are given in a one-dimensional com-
putational domain (x 2 [�1,1]) as

v ¼ 0; ðq;pÞ ¼
ð1;1Þ if x < 0;

ð0:125;0:1Þ if x > 0;

�
ð14Þ

Four levels of refinements are used with the grid size of the base le-
vel Dx = 2/256. Solution at t = 0.5 is plotted in Fig. 5 along with the
analytic solution. The refinement levels are also displayed to show
the distribution of the mesh points. The mesh points are well clus-
tered at the contact discontinuity and the right shock which is
resolved with only two points at the highest level of refinement.
No numerical oscillation is detected although the simple linear
interpolation is used to reconstruct the solution on newborn blocks.

To assess to what extent the global conservation constraint is
broken, we plot in Fig. 6 the evolutions of the relative deviations
of the global conservation, which is calculated by

dUðtÞ ¼
R

D Uðx; tÞdx�
R

D Uðx;0Þdxþ ðFR � FLÞtR
D Uðx;0Þdx

: ð15Þ

Here D is the total computational domain, U represents the conser-
vative quantities and FL and FR denote the fluxes at the left and right
boundaries. It shows that the errors increase as the grid evolved but
within very low values (�10�3) that can hardly affect the discon-
tinue capture.
3.2. Adiabatic blast wave

In this problem, we examine the method to capture a strong
two-dimensional shock. That is a blast wave initialized by an
over-pressured circular region in the center of a static flow [30].
Here the same parameters given in [30] are used. The computational
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domain is a unit square with the center at (0,0). The initial condition
is specified as

q ¼ 1;v ¼ 0; p ¼
10 if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< 0:1;

0:1 if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
P 0:1;

(
ð16Þ
t
0.1 0.2 0.3 0.4 0.50

0.0005

0.001

0.0015
ρ
ρvx
E

Fig. 6. Sod shock-tube problem: the evolutions of the non-conservative errors with
time.
Four levels of refinements is allowed with coarsest mesh size of
Dx = Dy = 1/64, and the initial grid is refined according to the pres-
sure profile. Fig. 7 shows the density and the grid blocks at time
t = 0.2. Good grid adaption and highly symmetry can be observed.
In Fig. 8 the variables along two lines (y = 0 and x = y) through the
Fig. 7. Adiabatic blast wave: density at t = 0.2 and the corresponding grid blocks.
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domain center are compared with the reference solution obtained
by the original, well-established CESE method on an uniform 2562

grid. The profiles are consistent with results in [30] and it further
demonstrates the good symmetry and the correct capture of the
discontinuities. Check of the global conservation also gives the rel-
ative errors within rather small values (�5 � 10�3). All these con-
firm the AMR–CESE method for the following, more complicated
problems.
3.3. Wind tunnel with a step

To further demonstrate the shock-capture capability of the
combination of the CESE and AMR methods, the classic problem
of a wind tunnel containing a forward facing step is calculated. This
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Fig. 8. Adiabatic blast wave: profiles of density q, pressure p and specific kinetic energy
the original CESE method on an uniform 2562 grid.
problem has been employed by many researchers for code valida-
tion and comparison since it was first proposed by Emery [31–33].
Due to the multiple shock reflections and interactions in the prob-
lem, it is a severe test to examine the code for capturing such com-
plicated flow features.

The problem is initialized with an uniform supersonic flow with
Mach 3 in a wind tunnel of (x,y) 2 [0,3] � [0,1], as shown in Fig. 9.
Between x = 0.6 and x = 3 along the x-axis is a step with height of
0.2. Inflow condition is given at the left boundary (x = 0) with val-
ues of

ðq;v;pÞ ¼ ð1:4;3;0;1Þ ð17Þ

which is also served as the initial condition. Outflow condition is
used for the right-hand x-boundary. All the other faces are treated
x
0 0.2 0.4

x
0 0.2 0.4

x
0 0.2 0.4

reference
y=0
x=y

0.5v2 along two lines through the blast center. The reference values is computed by
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with the reflecting boundary condition simply with no special
treatment at the step corner. The computational domain is
uniformly divided into blocks initially and four refinement levels
are used.

With evolving of the solution, a curved shock forms in front of
the step immediately, and as the shock moves, it reaches the top
wall and is reflected. The reflection point moves left and then a
Mach stem forms when the incident shock angle exceeds the
maximum value for regular reflection (40� for c = 1.4). Meanwhile,
the reflected shock goes downward and reaches the top of the step,
where it is reflected back again. Then this secondly reflected shock
propagates upward and is reflected by the top wall to form a third
shock. Besides, the over-expansion flow at the step corner
impinges on the step top and results in an individual weak shock
which successively intersects with the first and second reflected
shocks. After then, the flow evolves slowly and converges to a
steady state.

The evolution of density from t = 0 to t = 4, when the most inter-
esting flow develops [32], is shown in Fig. 9 with the time interval
of 1. As can be seen, the main structures of our results (i.e., the
Mach stem, expansion fan at the step corner and the interaction
between the reflected shocks with rarefaction waves) are highly
consistent with those in Woodward and Colella [32] and are much
more crisply reproduced by the adaptive grid system shown in the
right column of Fig. 9. For many schemes the individual shock
originated from the step corner is hard to be captured because of
Fig. 9. Wind tunnel with a step: density at t = 1 to t = 4 and the grid blocks
its weakness and it is likely to be dissipated by the diffusion effect
before interaction with the reflected shock. Our method does not
suffer from this numerical effect and the profile of such shock is
distinct. In this sequence of side-by-side figures, one can vividly
observe the evolution of the grid resolution responding to the
moving of the shocks, which shows the capability of the present
refinement criteria.

Note that the artificial Mach stem at the top of the step, which
usually arises in low-resolution runs without a special treatment of
the step corner, almost disappears in our results. Another numeri-
cal effect, the Kelvin–Helmholtz instability of the contact disconti-
nuity along the top wall as described in Woodward and Colella
[32], is also well controlled in our method. The same problem is
calculated by another AMR code Flash [34], and results published
online show that such instability turns out to be more visible on
the high-resolution grid (http://www.flash.uchicago.edu/). On the
contrary, a detailed comparison can show that in our results the
instability is a little weaker than that of Woodward and Colella
[32], even though our resolution is higher.

A detailed comparison of the AMR–CESE results with a reference
solution is given in Fig. 10 by plotting the distribution of the density
along the horizontal centerline (y = 0.5). Here the reference solution
is calculated by the original CESE method on an uniform grid at the
highest resolution, i.e., an uniform grid with 960 � 320 points
excluding the step. As can be seen from the figures, both the
locations and the jumpings of all the discontinuities are highly in
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agreement with the reference solution at each time in the evolu-
tion. With the same condition of computer resource (i.e., same
number of processors on the same platform), the AMR test costs
about one third of CPU time used by the uniform fixed-mesh test.
The computation of this problem represents a typical success of
the AMR–CESE method by achieving the same high resolution at
relatively very low cost.

3.4. Laminar flow over flat plate

The first problem for NS equations is a laminar flow over a flat
plate. This classical problem with the Blasius solution [35]
Fig. 11. Laminar flow over flat plate: the grid blocks and color-coded image of the
velocity vx. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
represents the simplest of flow problems yet brings out some
fundamental aspects of viscous flow and the boundary layer
theory. It provides a basic test since accurate prediction of the
boundary layer is critical to development of a viscous flow solver.
vx
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Fig. 12. Laminar flow over flat plate: similarity variable g vs. velocity vx. Three
different values 0.6, 0.7 and 0.8 for x are plotted.
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As shown in Fig. 11, the computational domain is (x,y) 2
[�0.25,1] � [0,1], where the plate is represented by a non-slip wall
at the bottom boundary with 0 < x 6 1. The subsonic inflow is spec-
ified at the left boundary (x = �0.25) and a fixed pressure outflow is
given at the right boundary (x = 1). On the bottom boundary ahead
of the plate, a slip wall condition is applied to capture the effect of
leading edge flow. At the upper boundary non-reflective boundary
condition is used to model the farfield flow. The free-stream Mach
number is M = 0.1 and the Reynolds number is chosen Re = 1000.
The inflow and the initial conditions are

ðq;v;pÞ ¼ 1;1;0;
1

cM2

 !
: ð18Þ

Usually a stretched (compressed) grid is adopted to resolve the
boundary layer [36], which needs special consideration of the grid
stretching function. With the aid of AMR grid technique, the task of
grid generation becomes very simple. The computational grid is
produced by first uniformly dividing the domain into 4 � 4 blocks
vx
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Fig. 14. Driven cavity flow problem: distributions of velocity component vx along the ver
result and the squares denote Ghia’s result.
and then refining the blocks touching the plate using four more
refinement levels (Fig. 11). In such way, the distance from the plate
to the first grid point is 1/29 of the domain height, which is suffi-
cient for resolving the boundary layer. Since the feature of flow
above the boundary layer does not change significantly in the
run, the grid is kept static with the main objective to resolve the
boundary layer.

Fig. 11 also shows the converged velocity vx. In Fig. 12 the result
is compared with the Blasius solution [35] by plotting the variation
of velocity vx with the similarity variable g given by

g ¼ y

ffiffiffiffiffiffiffiffiffi
qRe
2xl

s
: ð19Þ

It shows that our result are in good consistency with the Blasius
solution.

3.5. Two-dimensional lid-driven cavity

Because of the existence of several complex flow phenomena
(corner eddies, longitudinal vortices, primary vortices, and interac-
tions between vortices) in it, the driven cavity flow has been taken
as a classical benchmark for evaluation of the numerical schemes,
especially the incompressible viscous solvers [37,38,25,39,40].
Here it is calculated to examine the method at the incompressible
limit and the capability of modeling the viscosity effect, since in
this problem the viscosity plays a main role and the flow is driven
by the friction force.

As usual, the computational domain is (x,y) 2 [0,1] � [0,1] and
the initial conditions are given as

q ¼ 1;p ¼ 1
cM2 ;v ¼ 0: ð20Þ

The Mach number and the Reynolds number is set as M = 0.1
and Re = 1000. The top boundary (y = 1) is a moving lid with speed
of vx = 1, and other three boundaries are stationary walls. All the
boundary conditions are given by the non-slip wall condition. Ini-
tially, the domain is uniformly divided into 8 � 8 blocks. When
running three levels of refinements are allowed such that the mesh
size of the middle level is Dx = Dy = 1/128. The velocity divergence
r � v is excluded from the refinement criteria because of the
incompressible condition, i.e., r � v = 0.

The solution reaches the steady state at t � 30. Fig. 13 shows the
streamline and the final grid. The complexity of the flow in the cav-
ity are well represented by the grid system with the finest blocks
clustering near the three vortexes. For a detailed comparison with
x

vy

0 0.2 0.4 0.6 0.8 1-0.6

-0.4

-0.2

0

0.2

0.4

tical centerline (left) and vy along the horizontal centerline (right). The lines are our



x

y

-0.8 0 0.8 1.6
0

0.2

0.4

0.6

0.8

1

Fig. 15. Shock/boundary layer interaction problem: the initial grid.
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the result reported in Ghia et al. [37] with an uniform 128 � 128
grid, we plot the velocity distributions along the vertical and hor-
izontal centerlines in Fig. 14. As can be seen, there is a slight devi-
ation between the two results for 0.1 6 x 6 0.2 and 0.1 6 y 6 0.2.
This is mainly because the coarsest blocks are in such regions,
where the grid resolution is half of that in Ghia et al. [37]. Even
so, the solution of the rest region match very well with Ghia’s
and the main features of the flow (i.e., the locations of the vortexes)
are well reproduced.
Fig. 16. Shock/boundary layer interac
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3.6. Shock wave boundary layer interaction

The shock/boundary layer interaction problem in [41] is often
used as a benchmark for solvers that designed for the full
Navier–Stokes equations [38,25], and is a particularly good test
for our purpose due to the coexistence of shocks and boundary
layer. Following Zhang et al. [25], the computational domain is
(x,y) 2 [0,2.4] � [0,1.164] (Fig. 15). The left and the upper bound-
ary conditions are specified to introduce an oblique shock imping-
ing on the solid wall on the bottom boundary (x P 0). Boundary
layer separation will occur at the shock impinging if the shock is
strong and the incident shock angle is large enough. Reproducing
such flow features requires clustered cells near the solid wall with
grid size Dy 6 1 � 10�3 and the advantages of AMR can be seen to
resolve the boundary layer and capture the shocks simultaneously.

In the present test, the shock incident angle is set to be 32.6�
and the inflow from the left and upper boundaries are given as

ðq1;v1;p1Þ ¼ ð1:00000;1:00000;0:00000;0:17857Þ ð21Þ

and

ðq2;v2;p2Þ ¼ ð1:13074;0:96644;�0:05248;0:21213Þ ð22Þ

respectively, for the desired shock angle. The free-stream (the left
inflow) Mach number is M = 2.0 and the Reynolds number
tion problem: pressure contours.
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Re = 2.95 � 105. On the bottom boundary, similar to the laminar
flow over a flat plate problem (Section 3.4), slip wall condition is
prescribed for x < 0 and non-slip wall condition for x P 0. Finally
non-reflective boundary condition is used on the right boundary
as a supersonic outlet. The initial conditions are given by the same
values of the left inflow. The initial grid is generated in the similar
manner as in Section 3.4. It consists of 8 � 8 blocks of the basic
refinement level and the blocks touching the solid wall are refined
with six more levels (see the bottom of the Fig. 15). Thus the
distance from first grid point to the wall is nearly 2.4 � 10�4 of
the domain height. Four levels of refinements are used for the grid
system to capture the shocks dynamically. Specially, blocks
abutting the bottom wall are restricted from being coarsened to
keep high-resolution there.

Fig. 16 shows the pressure contours. The boundary layer sepa-
ration can be visibly observed at the shock impinging point
(x = 1). The incident and reflective shocks are crisply captured
and well characterized by the converged grid structure shown in
Fig. 17. As there are seven levels of blocks used in the test, the
mesh size varies 26(64) times across the computational domain
and thus the difference in local timesteps is 64 times. It is such case
that brings to light the effects of the variable-timestep algorithm,
since it can reduce the numerical diffusion effectively for shock
capture and save the computational resource significantly com-
pared to the uniform-timestep scheme.

The pressure and the friction coefficient along the solid wall are
plotted and compared with the corresponding experimental data
[41] in the Fig. 18, respectively, which show that our results are
in agreement with the experimental data. The present results,
except the friction distribution, are also comparable with those
reported in Zhang et al. [38,25], where the similar CESE method
is used, but on an unstructured static grid. We note that a special
treatment of the non-slip wall is used by Zhang et al. [38,25],
which can characterize the shear stress by the wall more
accurately. We expect to improve our result in the future using this
special boundary treatment.

4. Conclusions

In this paper, we report an extension of the AMR–CESE method
for Euler and Navier–Stokes equations. The method is an
implementation of the CESE method on AMR grid with the help
of PARAMESH. For the compatibility of integrating the CESE solver
within the PARAMESH framework, improvements are introduced.
They includes a variation of the the original CESE grid, merging
of the intermediate advancing steps and the variable timestep
algorithm between grid blocks. The AMR–CESE method retains
all the salient advantages of the original CESE method, and owns
new merits including (1) simplified definitions of the CE/SE, (2)
the speedup of the CESE solver and (3) solution-adaptivity in both
space and time which is consistent with the key principle of the
CESE method. Even on an extremely non-uniform mesh, the meth-
od can control the numerical dissipation effectively without the
CNIS scheme, due to the adoption of the variable timestep algo-
rithm. A suite of numerical benchmarks including one and two-
dimensional problems for the Euler and Navier–Stokes equations
are calculated. Comparison with the experimental or previously re-
ported numerical results demonstrates the validation of our meth-
od. The method shows capabilities of both capturing discontinuity
with high resolution in the supersonic flows and high-performance
resolving the boundary layer effect in the viscous flows.
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