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We present a new hybrid numerical scheme for two-dimensional (2D) ideal magnetohydrodynamic (MHD) equa-
tions. A simple conservation element and solution element (CESE) method is used to calculate the flow variables,
and the unknown first-order spatial derivatives involved in the CESE method are computed with a finite volume
scheme that uses the solution of the derivative Riemann problem with limited reconstruction to evaluate the
numerical flux at cell interface position. To show the validation and capacity of its application to 2D MHD prob-
lems, we study several benchmark problems. Numerical results verify that the hybrid scheme not only performs
well, but also can retain the solution quality even if the Courant number ranges from close to 1 to less than 0.01.

PACS: 47.11.−j, 52.30.Cv DOI: 10.1088/0256-307X/29/9/094703

The space-time conservation element and solu-
tion element (CESE) method, originally proposed
by Chang,[1] and Chang, Wang and Chow,[2,3] is
a powerful numerical frame for solving conservation
laws. This method is non-conventional by differing
substantially from other well-established finite differ-
ence methods. To date the CESE method has seen
its great success in studying flows with moving and
steady shocks, acoustic waves, complex vertical flows,
etc.[2−8]

The original CESE scheme[3] has been extended by
Zhang et al.[9] for the numerical solution of the ideal
magnetohydrodynamics (MHD) equations. However,
the numerical dissipation associated with the CESE
scheme when using a fixed total marching time in-
creases as the Courant number (CFL) decreases. As
a result, for a small CFL number (say <0.1), a
CESE scheme may become overly dissipative. In
the CESE scheme, the solution variables are left
as unknowns, and their spatial derivatives are ob-
tained with the finite-difference-based approach or the
central-difference like weighted average approach.[5−7]

This results in the introduction of some numerical dis-
sipation into the system. From this point, we find
that obtaining the derivatives is key to improving the
CESE method.

In this Letter, we propose a new approach in-
stead of using the routine weighted average approach
to compute the spatial derivatives. The new proce-
dure for calculating the spatial derivatives, combined
with the simple CESE scheme for calculating solution
variables, forms our new hybrid scheme of the present
study. In computing these spatial derivatives, we eval-
uate the numerical flux at the interface by solving the
derivative Riemann problem (DRP). The solution of
the DRP has been used to structure ADER (arbitrary

accuracy derivative Riemann problem) methods. The
ADER approach for constructing high order methods
was first put forward by Toro and collaborators for
linear problems on Cartesian meshes.[10] At present,
the ADER approach has been applicable to multidi-
mensional nonlinear systems.[11,12]

In the following, we will briefly describe the new
hybrid method. The two-dimensional ideal MHD
equations can be cast into the following conservative
form:

𝜕𝑈

𝜕𝑡
+

𝜕𝐹 (𝑈)

𝜕𝑥
+

𝜕𝐺(𝑈)

𝜕𝑦
= 0, (1)

where 𝑈 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝑒,𝐵𝑥, 𝐵𝑦, 𝐵𝑧)
𝑇 is the vector

of conserved variables, 𝐹 and 𝐺 are the conservation
flux vectors in 𝑥 and 𝑦 directions, respectively. Here
𝜌 and 𝑝 are the density and gas pressure, respectively;
𝑢 = (𝑢, 𝑣, 𝑤) and 𝐵 = (𝐵𝑥, 𝐵𝑦, 𝐵𝑧) are velocity com-
ponents and magnetic field components in the 𝑥, 𝑦, 𝑧
directions, respectively. The specific total energy 𝑒 is
𝑒 = 𝑝/(𝛾 − 1) + 𝜌𝑢2/2 +𝐵2/2.

Due to space limitations, we will not introduce
in detail the CESE method for calculating the flow
variables based on the regular quadrilateral meshes
in two-dimensional space. We divide the 𝑥–𝑦 plane
into non-overlapping uniform quadrilaterals and any
two neighboring quadrilaterals share a common side
(Fig. 1(a)). The centroids of quadrilaterals are marked
by hollow circles. Point 𝑄 is the centroid of a typical
quadrilateral 𝐵1𝐵2𝐵3𝐵4, and is also the centroid of
polygon 𝐴1𝐵1𝐴2𝐵2𝐴3𝐵3𝐴4𝐵4, which coincides with
quadrilateral 𝐴1𝐴2𝐴3𝐴4. The points 𝐴ℓ, ℓ = 1, 2, 3, 4,
respectively, are the centroids of the four quadrilater-
als neighboring to the quadrilateral 𝐵1𝐵2𝐵3𝐵4. The
definition of the conservation element (CE) and the
solution element (SE) (see Fig. 1(b)) follows that of
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Qamar and Mudasser.[8] The solution of the flow vari-
ables can be obtained by solving the MHD equations
on CE and SE above, which is the same as Eq. (20)
in Ref. [8]. For a more detailed derivation, the reader
can refer to Zhang et al.[5]
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Fig. 1. Space-time geometry of the CESE method: (a)
representative grid points in the 𝑥–𝑦 plane, (b) the defini-
tions of CE and SE.

If all flow variables and their spatial derivatives
at the 𝑛 − 1/2 time level are known, we can calcu-
late flow variables at the 𝑛 new time level. Here 𝑛 is
the index for 𝑡. However, for the calculation at the
𝑛 + 1/2 time level, we still need their spatial deriva-
tives at the 𝑛 new time level. Formerly, in a CESE
scheme, the spatial derivatives at the 𝑛 new time level
are calculated through several finite-difference-based
approaches and the central-difference like weighted av-
erage approach.[5−7]

In this study, we resort to the DRP method for
updating the first order spatial derivatives. Moti-
vated by DRP used in the ADER method,[11,12] we
first construct the evolution equations for the spa-
tial derivatives, then use the unsplit finite volume ap-
proach to calculate the corresponding evolution equa-
tions of these spatial derivatives.

We first apply the chain rule to Eq. (1) and obtain

𝜕𝑡(𝑈) + 𝐽𝑥𝜕𝑥(𝑈) + 𝐽𝑦𝜕𝑦(𝑈) = 0, (2)

where 𝐽𝑥 and 𝐽𝑦 are Jacobian matrices. Then we con-
struct the evolution equations for spatial derivatives
by differentiating Eq. (2) as follows:

𝜕𝑡(𝜕𝑥𝑈) + 𝜕𝑥(𝐽
𝑥𝜕𝑥𝑈) + 𝜕𝑥(𝐽

𝑦𝜕𝑦𝑈) = 0,

𝜕𝑡(𝜕𝑦𝑈) + 𝜕𝑦(𝐽
𝑥𝜕𝑥𝑈) + 𝜕𝑦(𝐽

𝑦𝜕𝑦𝑈) = 0. (3)

Owing to 𝜕𝑥(𝐽
𝑦𝜕𝑦𝑈) = 𝜕𝑦(𝐽

𝑦𝜕𝑥𝑈) and
𝜕𝑦(𝐽

𝑥𝜕𝑥𝑈) = 𝜕𝑥(𝐽
𝑥𝜕𝑦𝑈) when 𝐽𝑥 and 𝐽𝑦 do not

depend on 𝑥 and 𝑦, Eq. (3) can be written in the form

𝜕𝑡(ℱ) + 𝜕𝑥(𝐽
𝑥ℱ) + 𝜕𝑦(𝐽

𝑦ℱ) = 0, (4)

where ℱ stands for 𝜕𝑥𝑈 or 𝜕𝑦𝑈 .
Using Gauss’s law, the integration form of Eq. (4)

can be written as

𝜕

𝜕𝑡

∫︁
ℱ𝑑𝑣 +

∫︁
(𝐽𝑥ℱ𝑛𝑥 + 𝐽𝑦ℱ𝑛𝑦)𝑑𝑠 = 0, (5)

where 𝑑𝑣 and 𝑑𝑠 are the volume and surface elements
of the control volume, and 𝑛 is the unit vector normal

to the surface of the control volume. For the two-
dimensional case, we have

𝐽𝑥ℱ𝑛𝑥 + 𝐽𝑦ℱ𝑛𝑦 = 𝑇−1𝐽𝑥
𝑛ℱ𝑛, (6)

where 𝑇−1 is the inverse of the rotation matrix 𝑇 ,
which rotates the 𝑥 axis to the direction of 𝑛.

We consider a typical quadrilateral finite volume
𝑉𝑄 = 𝐴1𝐴2𝐴3𝐴4 of a two-dimensional domain, as de-
picted in Fig. 1(a). The finite volume has four intercell
boundaries. From Eqs. (5) and (6), a discrete formu-
lation of the evolution equation in the finite volume
method style for the grid point 𝑄 is written in the
form

𝜕

𝜕𝑡
ℱ𝑄𝑆 +

4∑︁
ℓ=1

𝑇−1
ℓ (𝐽𝑥

𝑛ℓ
ℱ𝑛ℓ

)𝜆ℓ = 0, (7)

where ℓ denotes the number of the grid points to neigh-
boring grid point 𝑄, 𝑆 denotes the area of the con-
trol volume cell containing grid point 𝑄, and 𝜆ℓ is the
length of the ℓth side face.

In order to define numerical fluxes across the in-
tercell boundaries, we solve Riemann problems for
spatial derivatives (DRP) in the direction normal
to the cell edge coupled with limited linear recon-
struction. As the above evolution equation (4) is
too complicated, following the simplified approach
of Toro and Titarev,[13] we also assume the equa-
tion to be linear with a constant coefficient matrix
𝐽𝑥
𝐿𝑅 = 𝐽𝑥(𝑈(0, 0+)), where 𝑈(0, 0+) can be obtained

by solving the classical Riemann problem.[11,13] Then
we obtain the following linearized and classical Rie-
mann problems,

𝜕𝑡(ℱ(𝑥, 𝑡)) + 𝐽𝑥
𝐿𝑅𝜕𝑥(ℱ(𝑥, 𝑡)) = 0,

ℱ(𝑥, 0) =

{︂ ℱ𝐿(0) if 𝑥 < 0,

ℱ𝑅(0) if 𝑥 > 0,
(8)

where ℱ𝐿 and ℱ𝑅 are the reconstructions of ℱ on the
left and right sides of interface, respectively. Then the
interface fluxes can use the upwind flux, for example,
the Roe flux.[14]

In order for the scheme to be more than first-order
accurate, a local reconstruction must be carried out;
in order to damp off numerical oscillations, the recon-
struction must be limited. For a given cell with center
𝑄, the linear reconstruction of the spatial derivatives
is limited in the form

ℱ𝑚(𝑥, 𝑦) = ℱ𝑚 + 𝜙𝑚∇ℱ𝑚 · 𝑟, (9)

where 𝑚 = 1, 2 · · · 8, ℱ𝑚 is the cell-averaged value pre-
scribed at 𝑄, 𝜙𝑚 is a chosen limiter, 𝑟 is the vector
extending from the cell center 𝑄 to any point (𝑥, 𝑦)
within the cell, and ∇ℱ𝑚 is the cell-centered gradi-
ent. In a manner similar to those used in Ref. [14], the
limiter is defined as

𝜙𝑚 = min
(︁
1,

|ℱ𝑚 −max𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(ℱ𝑚)|
|ℱ𝑚 −max𝑐𝑒𝑙𝑙(ℱ𝑚)|

,

|ℱ𝑚 −min𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(ℱ𝑚)|
|ℱ𝑚 −min𝑐𝑒𝑙𝑙(ℱ𝑚)|

)︁
, (10)
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where the subscript neighbor denotes the neighboring
cells used in the gradient reconstruction, and the sub-
script cell denotes the unlimited (𝜙 = 1) reconstruc-
tion to the centroids of the faces of the cell. Now, ℱ𝐿

and ℱ𝑅 can be computed by taking the end point of
the vector 𝑟 in Eq. (9) as the midpoint of the faces
of the cell. Finally, The combination of the CESE
method for calculating the flow variables and Eq. (7)
constitutes the new hybrid scheme.
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Fig. 2. Distribution of 𝐵𝜂 with different mesh resolution
at 𝑡 = 5 (a) for the traveling Alfvěn (𝑣𝜉 = 0, 𝑣𝐴 = −1)
wave problem, (b) for the standing Alfvěn (𝑣𝜉 + 𝑣𝐴 = 0)
wave problem.

Table 1. The average errors and the orders of accuracy at
𝑡 = 5.

Traveling waves Standing waves
𝑁

𝐿1 Error 𝐿1 order 𝐿1 Error 𝐿1 order
16 3.17×10−2 1.38×10−2

32 5.38×10−3 2.5588 2.94×10−3 2.2308
64 9.27×10−4 2.5370 7.81×10−4 1.9124

To show the validity of the hybrid scheme, we
simulate several benchmark test cases. The smooth
Alfvěn wave problem was suggested in Toth[15] as a
test for numerical accuracy of the scheme for smooth
flow. The Alfvěn wave propagates at an angle of
𝛼 = 30∘ with respect to the 𝑥 axis in the domain
[0, 1/ cos𝛼] × [0, 1/ sin𝛼]. The initial conditions are
𝜌 = 1, 𝑣𝜉 = 0, 𝑣𝜂 = 𝐵𝜂 = 0.1 sin(2𝜋𝜉), 𝑣𝑧 = 𝐵𝑧 =
0.1 cos(2𝜋𝜉), 𝐵𝜉 = 1, 𝑝 = 0.1 with 𝛾 = 5/3, where
𝜉 = 𝑥 cos𝛼 + 𝑦 sin𝛼, and 𝜂 = 𝑦 cos𝛼 − 𝑥 sin𝛼. The
Alfvěn wave is a traveling wave. Note that the wave
becomes standing if 𝑣𝜉 = 1.

The problem is solved on a set of rectangular
𝑁 × 2𝑁 meshes with 𝑁 = 16, 32, 64. The numerical
error of variable 𝑢 is calculated in an 𝐿1 norm defined
as 𝛿𝑁𝑢 = 1

𝑁×2𝑁

∑︀
𝑖,𝑗

|𝑢𝑖,𝑗 − 𝑢𝑒𝑥𝑎𝑐𝑡
𝑖,𝑗 |.. An averaged value

is computed as 1
4 (𝛿𝑁 (𝑣𝜂)+𝛿𝑁 (𝑣𝑧)+𝛿𝑁 (𝐵𝜂)+𝛿𝑁 (𝐵𝑧)).

Periodic boundary conditions are imposed in both the
𝑥 and 𝑦 directions. The simulation is run to a final

time 𝑡 = 5 with CFL= 0.8. Figure 2 shows the profile
of 𝐵𝜂 along the line of 𝑦 = 0 with a different mesh reso-
lution for the traveling wave problem and the standing
wave problem. The errors in the wave amplitude are
quickly reduced with the use of a refined mesh. The
solution obtained by the mesh of 64 × 128 is nearly
identical to the analytical solution. Table 1 gives the
average numerical errors and orders of accuracy ob-
tained by the hybrid scheme. The results show that
the new hybrid scheme converges approximately at a
second order rate for smooth solutions.
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Fig. 3. Solution comparison of MHD Vortex problem by
using the CESE scheme (top) and the hybrid scheme (bot-
tom) at 𝑡 = 3.0 with CFL=0.08 (a) and CFL=0.008 (b).
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The MHD vortex problem has been studied
by many previous investigators.[7−9] Although not
shown, the results calculated using the hybrid scheme
with CFL =0.8 at 𝑡 = 0.5, 2 and 3, respectively,
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are almost identical to those of Zhang et al.[9] Here
we mainly compare the solution quality of the CESE
scheme and the hybrid scheme when CFL is less than
0.1. Figure 3 shows the solution comparison of the
density with CFL = 0.08 and CFL= 0.008 at 𝑡 = 3.0
by using the two schemes. From the results shown,
it is clear that the CESE solution deteriorates quickly
and does not capture the shock effectively as the value
of global CFL number drops below 0.1. The hybrid
scheme can still capture the shock effectively even if
the value of global CFL number is less than 0.01. The
advantage of the hybrid scheme over the CESE scheme
is obvious.

We also simultaneously solve the Riemann prob-
lem with different CFL numbers. Figure 4 shows the
solution comparison of the density with CFL= 0.08
and CFL =0.008 at 𝑡 = 0.2 using the two schemes,
respectively. As before, we can see that the CESE
scheme is more dissipative than the hybrid scheme
when the CFL number is less than 0.1. The CESE
scheme does not capture the shock effectively, but the
hybrid scheme can capture it. It also further approves
that the hybrid scheme can capture the shock effec-
tively even if CFL is less than 0.01.

In summary, we have presented a new hybrid
method for solving 2D ideal MHD equations. To
demonstrate the capabilities of the hybrid method,
three benchmark problems are calculated. The re-
sults of smooth Alfvěn wave problem indicate that for
smooth flows the present scheme is second-order ac-
curate. By testing different CFL numbers, we have
found that the new scheme can retain the solution
quality even if the CFL number ranges from close to 1
to less than 0.01. This feature mitigates the numeri-
cal dissipation caused by a small local CFL condition,
which is formerly overcome by the Courant number
insensitive scheme.[17,18] Their scheme also decreases
numerical dissipation by improving the procedure for
calculating the spatial derivatives, but the modified
procedure is still an essentially central difference like
the weighted average approach. Our new method for
computing the spatial derivatives is different from the

former approach through solving the corresponding
time-dependent equations of the spatial derivatives,
which obey the original system of MHD equations and
can also be calculated by other numerical schemes,
such as: the Roe method and Godunov-type methods.
The method of calculating derivatives is a completely
new way. However, due to the DRP calculation, the
new hybrid scheme incurs extra computational cost.
However, this study shows that the proposed method
is a significant improvement of the CESE method and
very suitable for solving MHD equations. Our future
aim is to use the new hybrid method to analyse the so-
lar wind problem in interplanetary space since a large
disparity of CFL numbers exists from the Sun to Earth
space.[19]
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