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[1] In this paper, the essential technique of Grad-Shafranov (GS) reconstruction is
reformulated into an inverse boundary value problems (IBVPs) for Laplace’s equation on
a circle by introducing a Hilbert transform between the normal and tangent component of
the boundary gradients. It is proved that the specified IBVPs have unique solution, given
the known Dirichlet and Neumann conditions on certain arc. Even when the arc is
reduced to only one point on the circle, it can be inferred logically that the unique solution
still exists there on the remaining circle. New solution approach for the specified IBVP is
suggested with the help of the introduced Hilbert transform. An iterated Tikhonov
regularization scheme is applied to deal with the ill-posed linear operators appearing in
the discretization of the new approach. Numerical experiments highlight the efficiency
and robustness of the proposed method. According to linearity of the elliptic operator in
GS equation, its solution can be divided into two parts. One is solved from a semilinear
elliptic equation with an homogeneous Dirichlet boundary condition. The other is solved
from the IBVP of Laplace’s equation. It is concluded that there exists a unique solution
for the so-called elliptic Cauchy problem for the essential technique of GS reconstruction.
Citation: Li, H. J., X. S. Feng, J. Xiang, and P. B. Zuo (2013), New approach for solving the inverse boundary value problem of
Laplace’s equation on a circle: Technique renovation of the Grad-Shafranov (GS) reconstruction, J. Geophys. Res. Space., 118,
doi:10.1002/jgra.50367.

1. Introduction

[2] As in spacecraft data analysis, there is a novel tool
called Grad-Shafranov (GS) reconstruction to recover the
steady two-dimensional coherent magnetic structures from
observational data along paths of the spacecraft. The essen-
tial idea of GS reconstruction technique, i.e., discretizing the
Laplace’s operator of the GS equation with a finite difference
scheme, and producing the Cauchy data from observations
along the path, and then solving it as a closed system on a
narrow strip around the path, is first introduced by Sonnerup
and Guo [1996] and then renovated by Hau and Sonnerup
[1999] with a weighted three-point smoothing approach to
suppress the exponential increase of the numerical errors
(for details, see a recent review of Lui [2011] and the hand-
book from Möstl and Farrugia [2010]). This technique is
later implemented by Hu and Sonnerup [2001] and then is
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applied to study the interplanetary magnetic cloud structures
[Hu and Sonnerup, 2001; Hu et al., 2003]. Recently, the
technique has been improved further by Isavnin et al. [2011],
where the filtering approach of Hau and Sonnerup [1999] is
replaced by a digital differentiator. Efforts in designing and
updating the filtering scheme for GS technique are in fact to
find a proper way to settle the ill-posedness contained in its
solution approach, which is the main mathematic obstacle
confronted by the GS reconstruction. In this investigation,
we try to settle the ill-posedness with the boundary integrals
of the elliptic operators, and thus, the essential idea of the
GS reconstruction technique is considered as the IBVPs of
Laplace’s equation on a circle.

[3] Conception of “inverse boundary value problems
(IBVPs) for Laplace’s equation” can be retrospected to about
110 years ago [Hadamard, 1902], when Hadamard laid the
basis of the concept of well-posed problems, and used the
“Cauchy problem for the Laplace’s equation” as his first
example of a problem that is not well-posed. Later on, in
1923, he published his well-known example of instability
and provided a fundamental example that shows a solution
of a Cauchy problem for Laplace’s equation does not depend
continuously upon the data [Hadamard, 1923]. From then
on, the so-called “Cauchy problem for Laplace’s equation”
has remained as a typical ill-posed problem or an inverse
problem and undergone an intensive study.

[4] The Cauchy problem for Laplace’s equation is proved
to be severely ill-posed; that is, any small change in the
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initial data may result in a dramatic change in the solution.
Theoretical analysis of Belgacem [2007], investigated the
severe ill-posedness of the Cauchy problem, by using a
Steklov-Poincaré approach. The existence and uniqueness
of a weak solutions for arbitrary Cauchy data was inves-
tigated by Calderón [1958] and Engl and Leitão [2001].
It has been proved that a continuous dependence of the
solution on the initial data can be obtained under an addi-
tional a priori boundedness condition [Payne, 1960, 1970;
Tautenhahn, 1990; Reinhardt et al., 1999; Alessandrini et
al., 2009], which is called the conditional stability.

[5] In despite of the great difficulty to achieve the
right solution due to its high ill-posedness, a variety of
numerical methods are developed under the inspiration
of theoretical results, e.g., the quasi-reversibility method
[Klibanov and Santosa, 2007; Bourgeois, 2005, 2006,
2010], the Backus-Gilbert method [Cheng et al., 2001;
Hon and Wei, 2001], the Mann iterative regularization
method [Engl and Leitão, 2001], the conjugate gradient
method [Hào and Lesnic, 2000], the optimizational method
[Kabanikhin and Karchevsky, 1995], and the level set
method [Leitão and Alves, 2007]. Although details for each
method may be very different, they have a common charac-
ter, namely, an additional constraint on the discrete method,
or the regularization parameters are needed to satisfy the
so-called stability condition.

[6] Controversies arise from the treatment of its ill-
posedness. It is argued that using the term “elliptic Cauchy
problem” is inappropriate, since both the analytic and
numerical solution to a partial differential equation (PDE)
largely depend on the specific type of the PDE. The solu-
tion of an elliptic PDE depends on an enclosed boundary
(condition), whereas signals of a hyperbolic PDE for an
initial value problem propagate along the characteristics
[e.g., Courant and Hilbert, 1962]. As for the Cauchy prob-
lem or the proof of the Cauchy theorem, everything (such
as “domain of influence”) associated with the solution is
determined by the characteristics. On the other hand, an
elliptic PDE has no characteristics, or the eigenvalues of the
characteristic equation are purely imaginary.

[7] We prefer to use the term of inverse boundary problem
to the Cauchy one, since the considered problem is essen-
tially an elliptic problem and is well-posed. Thus, we need
only to recover the missing boundary data, which is of an
inverse problem on the Sobolev space [Yu, 2006], and this
inverse problem may be or may not be an ill-posed one,
which depends upon the known information. This treatment
is different from the philosophy of the elliptic Cauchy prob-
lem, where the ill-posedness is treated integrally throughout
its solution procedure.

[8] As for the essential technique of GS reconstruction,
we concluded that there exists an unique solution for the
so-called elliptic Cauchy problem. According to linearity
of the elliptic operator in GS equation, this solution can
be divided into two parts, one is solved from a semilinear
elliptic equation with an homogeneous Dirichlet bound-
ary condition, and the other is solved from the IBVP of
the Laplace’s equation. Solution approaches for the former
problem are discussed maturely in literatures, which is of
a trivial task, so that there is only nontrivial task left, that
is, to find an approach most suitable for the solution of
the IBVP.

[9] In this paper, we focus on the problem of missing
data completion for Laplace’s equation on a circle, which
aims at recovering missing conditions on some inaccessible
part of the boundary from the over-specified boundary
data on the remaining part. There are several numerical
approaches in the literature following this idea, e.g., Cao and
Pereverzev [2007], Chapko and Johansson [2009], Gupta
[2012], Kozlov et al. [1991], and Tajani and Abouchabaka
[2012a, 2012b], although most of them are still entitled
with the elliptic Cauchy problem. A new solution approach
are developed following an idea of reproducing kernel of
Hilbert space [Takeuchi and Yamamoto, 2008]. In contrast to
those approaches, we find that the Hilbert transform exists
between components of the gradients on a circle, and with
the help of this Hilbert transform, we develop a new solution
approach. We first discuss the Hilbert transform in section 2
and introduce the new approach for IBVPs in section 3.
Cases of benchmark tests and a summary are presented in
sections 4 and 5, respectively.

2. Hilbert Transform for BVPs of Laplace’s

Equation on a Circle

[10] Consider the Dirichlet problem of the Laplace’s
equation over a plane circular domain � � R2 with a
piecewise smooth boundary � ,

� 4u = 0 in �

u = u0 on � , (1)

and the Neumann problem,
� 4u = 0 in �

un = g on � , (2)

where � = @�, un = @u
@n and n is the normal to � , oriented

toward the exterior of �. For the BVP (1), there exists a
unique solution, and for problem (2), there exists a unique
solution up to an additive constant when the compatibility
condition, Z

�

gds = 0, (3)

is satisfied.
[11] Component of the boundary gradients ru|� = (ut, un)

can be uniquely determined from the solution of BVPs (1,
2), e.g., for the BVP (1), ut = d

ds u0(s) is the tangent derivative
of the known Dirichlet condition. As s 2 � , ut(s) satisfies
the periodic condition:

Z
�

ut(s)ds = 0, (4)

and un can be determined from its unique solution; for the
BVP (2), un = g is known; under the compatibility condition
(3), ut can be determined from its unique solution.

[12] If the constraint conditions of (3) and (4) are satisfied,
we find that there exists an important relation between the
component pair (ut, un), that is, the Hilbert transform:

un(x) =
1

2�
–
Z

�

cot
x – s

2
ut(s)ds, x 2 � , (5)

ut(s) =
1

2�
–
Z

�

cot
s – x

2
un(x)dx, s 2 � , (6)
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where –
R

denote the Cauchy principal integral, and items at
the right of equations (5) and (6) are singular integrals with
an Hilbert kernel.

[13] Theories of BVPs for Elliptic equations tell us that if
we want to get (ut, un), we need first to solve the BVP (1)
or (2) with one of the known conditions ut or un under cor-
responding constraints (3) or (4). But with the help of the
Hilbert transform in equations (5) and (6), it does not need
to solve the BVPs at all. One component of the boundary
gradients can be determined analytically from the other one
through the dual singular boundary integrals. The relations
in equations (5) and (6) is of great value in practice but
has seldom been discussed in literatures to our knowledge.
Detailed derivation of these relations are out of the scope of
this paper and will be presented elsewhere.

3. New Approach for Solving IBVPs Based on the

Hilbert Transform

[14] The IBVPs of the Laplace’s equation over a plane
circular domain � � R2 with a piecewise smooth bound-
ary (� = @�) are considered here. We denote the IBVPs as
follows 8<

:
4u = 0 in �

u = u0 on �0
un = g0 on �0,

(7)

where (u0, g0) are the known data given on �0(�0 [ �1 = �
and �0 \ �1 = ;). The new approach is developed to infer
the unknown information on �1, under the assumption ofR

�
ut(s)ds = 0 and

R
�

un(x)dx = 0.

3.1. Existence and Uniqueness of the IBVPs

[15] The existence and uniqueness of the mixed bound-
ary problem for elliptic equation have been proved by Gupta
and Cao [2009]. We present a proof of the existence and
uniqueness of the IBVP (7) in this section with the help of
a corollary derived from a theory of Gupta and Cao [2009]
and the introduced Hilbert transform.

[16] Lemma 3.1
(Theorem 3.1, section 3) Gupta and Cao [2009] For every
f 2 L2(�), every � 2 L2(�3), and every g1 2 H–1/2(�0), the
system of equations (3.5) admits a unique solution u( f, �, g1)
in L2(�).

[17] Corollary 3.1
For every u0 2 L2(�0) and every g1 2 H–1/2(�1), the system
of equations, 8<

:
4u = 0 in �

u = u0 on �0
un = g1 on �1,

(8)

admits a unique solution u(u0, g1) in L2(�), where (�0 [�1 =
� and �0 \ �1 = ;).

[18] Theorem 3.1
For every u0 2 L2(�0) and every g0 2 H–1/2(�0), the systems
of IBVP (7) admits a unique solution for boundary gradients
on the inaccessible part of �1, e.g., (ut1, un1) in H–1/2(�1).

[19] Proof. (1) Let us assume that another solution u*
n1

exists in H–1/2(�1) for the IBVP (7) besides un1. With the

Corollary 3.1, we assure that there exists corresponding
unique solution for the mixed BVPs (8), say u(u0, un1) and
u*

�
u0, u*

n1
�

in L2(�).
[20] Obviously, �0u|�0 = �0u*|�0 = u0, where �0 is the

Dirichlet trace operator. The enclosed boundary derivatives
for the tangent component can be denoted by ut = d

ds �0u and
u*

t = d
ds �0u*, respectively. Since �0u and �0u* are in H–1/2(�),

the periodic constraint are satisfied, i.e.,
R

�
ut(s)ds = 0 andR

�
u*

t (s)ds = 0.
[21] Thus, the Hilbert transform (5) can be applied as

un(x)|x2�0 =
1

2�

�
–
Z

�0

cot
x – s

2
du0 +

Z
�1

cot
x – s

2
� 0

0u|�1 ds
�

(9)

and

u*
n(x)|x2�0 =

1
2�

�
–
Z

�0

cot
x – s

2
du0 +

Z
�1

cot
x – s

2
� 0

0u*|�1 ds,
�

(10)
where � 0

0 = d/ds�0 is the derivative of linear operator �0. As
un|�0 = u*

n|�0 = g0, by subtracting equation (9) with (10), we
derive the result

Z
�1

cot
x – s

2
� 0

0(u – u*)|�1 ds = 0, x 2 �0. (11)

It indicates that u* = u, and from the Neumann trace theory,
we can conclude that u*

n1 = un1.
[22] (2) The existence of an unique ut1 for solution of

IBVP (7) can also be proved in a similar way.
[23] This completes the proof.

[24] Corollary 3.2
As �0 contract to only one point on the enclosed circle, given
the accurate data of (u0, g0), the IBVP (7) has still a unique
solution of (ut1, un1) on the inaccessible boundary of �1.

3.2. New Solution Approach for the IBVPs

[25] First, we set ut0 = du0/ds and un0 = g0, which are
the known information on �0, and set ut1, un1 as the pending
solution of IBVP (7), and then we denote ut = ut0 [ ut1 and
un = un0 [ un1. Assumed that the constraint conditions of (3)
and (4) are satisfied, the following equations can be derived
with the Hilbert transform (5, 6), i.e.,

Z
�1

cot
x – s

2
ut1(s)ds = fn(x), x 2 �0 (12)

and Z
�1

cot
s – x

2
un1(x)dx = ft(s), s 2 �0, (13)

where fn(x) = 2�un0(x) – –
R

�0
cot x–s

2 ut0(s)ds and ft(s) =
2�ut0(s) – –

R
�0

cot s–x
2 un0(x)dx are the decided right item of

equations (12) and (13), respectively. Both equations, (12)
and (13), are integral equations of the first kind.

[26] Quadratures and the integral operators in equations
(12) and (13) are discretized following the method of dis-
crete vortices, which is reported to have high accuracy for
singular integrals with Hilbert kernel [Belotserkovsky and
Lifanov, 1993]. The circle is uniformly partitioned within the
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Figure 1. Numerical errors are plotted for benchmark testing of the quadrature scheme of Hilbert
transform (5) on top panel and (6) on bottom panel, where the relative error Erel := kOux–uxk

kuxk
, x = t, n.

interval [0, 2�] with a mesh size of h = 2� /n; the resultant
operator equations are denoted in matrix form

Au = F, (14)

where A is the discrete integral operator, u is a column vec-
tor of the unknown quantities in equations (12) and (13),
and F is another column vector calculated from the known
quantities on �0. Equation (14) may be severely ill-posed,
if there is no enough information on �0 or there are noises
(F = Fı), and thus cannot be solved directly.

[27] We solve it through the Tikhonov regularization
schemes [Tikhonov and Arsenin, 1977], which is formed by
the weighted sum of a residual norm C(u) = kAu – Fk2

and a Sobolev norm �(u) = kLuk2 (L is the discrete linear
operator of the first derivatives and is selected for the need

of smoothness). A regularized solution is found through
minimizing this sum, i.e.,

Ou = arg min{˛kAu – Fk2 + kLuk2}. (15)

This solution can be written in a matrix form as follows

Ou(˛) = (˛LTL + ATA)–1(ATF), (16)

where the upper index T denotes transposition and ˛ > 0,
which is the only regularization parameter. We select the
optimal value ˛ = ˛opt through an iterative scheme (for
details, see Ramm [2007])

Oun+1 = e–hn Oun + (1 – e–hn )(˛nLTL + ATA)–1(ATF), (17)

where ˛(t) = ˛0/(1 + t), hn = tn+1 – tn, and ˛n = ˛(tn), and
we choose ˛0 from the condition ı < kA Ou˛0 – Fık < 2ı, and

0 pi/2 pi 3pi/2 2pi
−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

x
0 pi/2 pi 3pi/2 2pi

s

0 pi/2 pi 3pi/2 2pi

s
0 pi/2 pi 3pi/2 2pi

x

u n(
x)

u n(
x)

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

u t(x
)

u t(x
)

Figure 2. Benchmark testing results for IBVP solution, the recovered data on �1 and the transformed
data on �0 are plotted against the analytical data, and top row for the case �0 = [0, �] and bottom row for
case of �0 = [0, � /2]. The error are defined by kOux–uxk

kuxk
, x = n1, t1, n0, t0.
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the iteration repeats until the condition 0.9ı < kA Oun – Fık <
1.001ı is satisfied, where ı is the specified noise level.

4. Numerical Results

4.1. Benchmark Testing of the Hilbert Transform

[28] Quadrature of the Hilbert transform (5, 6) are
discretized with the method of Belotserkovsky and Lifanov
[1993]. A benchmark testing is carried out with the analytic
function ut(s) = 2[cos(s) + sin(s)] and the exact dual func-
tion of un(x) = 2[cos(x) + sin(x)]. As shown in Figure 1, the
RMS errors are of 10–14 order when the circle is partitioned
by n = 400.

4.2. Benchmark Testing of the New Approach

[29] Integral equations (12, 13) are discretized in a similar
way as in section (4.1). Another benchmark testing is carried
out with the analytic function of ut(s) = –6 sin(2s)+8 cos(2s),
and the exact dual function of un(x) = 6 cos(2x) + 8 sin(2x).
The known data are produced on �0 through corresponding
analytic functions. Recovered data on �1 are produced by
the new approach with case of �0 = [0, �] and �0 = [0, � /2],
respectively. As shown by Figure 2, the relative error for
the recovered data is at a level of about 1% for the case
�0 = [0, �], i.e., the known information covered a half of the
circle, while for the case of a quarter circle (bottom panel),
it reaches the level of 13%–17%.

[30] As regards the transformed data on �0 that are plot-
ted on Figure 2, which is produced from the recovered data
on �1 plus corresponding known data on �0 through the
Hilbert transform described by equations (5) and (6), we find
that the relative errors are all in the level of 0.01%, which
indicates that the iterated Tikhonov regularization scheme is
very effective in reducing the errors in transformed data.

[31] We can also find from the plots that bigger error in
recovered data will result in bigger error in the transformed
data, which indicates that further study is needed on setting
of parameters, like hn, ˛0, and ı, and the ceasing condition
in the iteration procedure of the regularization scheme. By
careful controlling of the iteration procedure, we believe our
new approach can produce a satisfied recovered results as
�0 becomes shorter and shorter, although for a situation set-
ting by the Corollary 3.2, finding the stable solution of the
IBVP (7) may be still a great challenge.

5. Summary and Conclusion

[32] The essential technique of GS reconstruction are
investigated in this paper, which is formed into the IBVPs of
the Laplace’s equation on a circle. We find that there exists
an Hilbert transform between the gradient components on
the circle, which can be formed into the singular integrals
with an Hilbert kernel. Existence and uniqueness of speci-
fied IBVPs are proved with a corollary from the theory of
mixed boundary value problem for elliptic equations and the
introduced Hilbert transform. New approach for solving the
IBVP that is implemented through an iterated Tikhonov reg-
ularization scheme, is presented. Benchmark testings to the
discrete schemes of the Hilbert transform and the new solu-
tion approach have shown the efficiency and robustness of
the proposed method. The numerical results have also shown
that there are room for further improvements of the new

approach, as the error of transformed data (from IBVP solu-
tion) on �0 is of order of 10–4, but for transformed results
from analytic data, it is of the order of 10–14.

[33] In contrast to the prevailing approach for solving the
IBVPs, we conclude that the new approach has the following
triumphs: (1) It is developed based on a concise formula of
the Hilbert transform, and it can be discretized by an accu-
rate discrete vortex method, which is seldom been discussed
in literatures to our knowledge. (2) With this new approach,
we do not need to discretize the Laplace operator (e.g., the
finite difference or the Galerkin method), or else it would
result in numerical errors mixed with the ill-posedness of the
suggested problem. (3) We need also not to prepare the first
guess of the unknown data on the remaining boundary with
this new approach; otherwise, it would result in impulses
or discontinuities in its solution, which is in conflict with
the u 2 L2(�) restriction. (4) We do not need to solve the
boundary value problem in the iterated solution procedure,
which shows the advantage of efficiency. The new approach
is applicable to the reconstruction of two-dimensional coher-
ent magnetic structures. New scheme for the IBVPs of GS
equation and the Benchmark testing with its analytic solution
will be presented in another publication.
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