
Computer Physics Communications 238 (2019) 181–193

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A multi-GPU finite volume solver for magnetohydrodynamics-based
solar wind simulations
Yuan Wang a,b, Xueshang Feng a,∗, Yufen Zhou a, Xinbiao Gan c

a SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
b College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
c School of Computer, National University of Defense Technology, China

a r t i c l e i n f o

Article history:
Received 5 December 2017
Received in revised form 27 October 2018
Accepted 4 December 2018
Available online 19 December 2018

Keywords:
MHD
FV method
Spherical shell domain
CUDA
Solar wind

a b s t r a c t

Magnetohydrodynamic (MHD) simulations in the domain of spherical shell are a crucial and challenging
subject inmany fields such as geophysics and solar-terrestrial physics, due to the complication of theMHD
equations and the specificity of the domain. Besides, due to the real-time requirement, accelerating the
heavy computation is proposed in many practical problems, of which the space weather simulation and
forecast from the Sun to Earth is a typical case. Considering these factors, we first develop a new, spatially
second-order accurate finite volume (FV) solver for three-dimensional (3D) MHD simulations with the
multiple time steps strategy, which is based on the six-component grid for spherical shell domain. Then
to speed up the simulation, we implement the solver on multiple GPUs with optimizations of CUDA and
establish an effectivemulti-GPU FV solver on the spherical shell domain. AMHDmanufactured solution is
used to validate the solvers’ spatial accuracy, and to measure their performances. Results show that both
solvers have nice scalability, and speedup ratios of 27.7x to 30.06x are obtained on GPUs. Then we utilize
them to study the ambient solar wind for Carrington rotation (CR) 2060. The multi-GPU FV solver can not
only obtain speedup ratios of about 29.0x, but capture main features of the solar corona and the mapped
in-situ solar wind measurements.

© 2018 Published by Elsevier B.V.

1. Introduction

Magnetohydrodynamic (MHD) simulations in the domain of
spherical shell are a crucial and challenging subject in many fields
such as geophysics and solar-terrestrial physics. On the one hand,
it is complicated to numerically solve the MHD equations com-
bining the equations of gas dynamics with the Maxwell equa-
tions, among which the violation of the divergence constraint ∇ ·

B = 0 may cause extra unphysical force parallel to the magnetic
field and break down numerical computation. On the other hand,
the specificity of the domain enhances this complication for its
spherical shape. Various grid systems have been studied includ-
ing the latitude–longitude grid [1–7] and Cartesian or cylindrical
system [8–11]. Ronchi et al. [12] presented the cubed sphere
method that projects the sides of a circumscribed cube onto a
spherical surface and divides the sphere into six identical regions.
By choosing the coordinate lines on each region to be arcs of great
circles, six coordinate systems are obtained and do not overlap
with each other. Feng et al. [13] introduced the six-component
grid for solar wind MHD modeling, which is a composite mesh
consisting of six identical components to envelope the spherical

∗ Corresponding author.
E-mail address: fengx@spaceweather.ac.cn (X. Feng).

surface. Each component is just a low latitude region of the usual
latitude–longitude grid, with partial overlap on the component
boundaries. Both the cubic sphere grid and the six-component grid
show advantages in sphere-surface body-fitting and paralleliza-
tion.

In addition, another considerable challenge is about computing
time and memory storage. Three-dimensional (3D) MHD simu-
lations present a large and different temporal and spatial scales
which cause heavy calculation and high arithmetic intensity, espe-
cially for space-physics problems. A typical case is that the numer-
ical space weather modeling from the Sun to Earth or beyond is
feasible only on massively parallel computers for the sake of
computational resources [14]. Moreover, the real-time or faster
than real-time numerical predictions of adverse space weather
events and their influence on the geospace environment put for-
ward higher demands for MHD simulations. Parallel techniques
at process level have been widely used to explore scalable high-
performance for numerical solutions of MHD equations, such as
OpenMP (open multiprocessing) and MPI (Message Passing In-
terface). With the introduction of general purpose programming
frameworks, such as Compute Unified Device Architecture (CUDA)
and open Computing Language (openCL), modern graphics pro-
cessing units (GPUs) can be evolved into a highly capable and
low-cost computing solution for scientific research widely. GPUs

https://doi.org/10.1016/j.cpc.2018.12.003
0010-4655/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.cpc.2018.12.003
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2018.12.003&domain=pdf
mailto:fengx@spaceweather.ac.cn
https://doi.org/10.1016/j.cpc.2018.12.003

182 Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193

Fig. 1. Basic six-component grid: (a) a spherical overset grid consisting of six components and (b) six identical components are partially overlapped.

devote a larger number of transistors to processing data than CPUs,
resulting in better performance for high arithmetic intensity com-
putations. Considering the limitation of memory and calculation
units on one graphics card, multiple GPUs are employed for large-
scale problems via communication techniques such as MPI, GPU
Direct and etcetera.

Some attempts of MHD simulations on GPUs have been pre-
sented during the past few years on either a single GPU ormultiple
GPUs. Wang et al. [15] implemented a compressible inviscid fluid
solvers and extended it to support MHD simulations on a NVIDIA
Quadro FX 5600 graphics card, acquiring a speedup ratio of 10x
than a 3 GHz CPU. They also tested the code on a small cluster
with four nodes and each has a NVIDIA GeForce 8800 GT graphics
card, with a close ideal speedup. Wong et al. [16] implemented a
total variation diminishing (TVD) algorithmofMHD simulations on
a single graphics card (NVIDIA GeForce GTX 295 or GTX480) and
achieved a speedup ratio of 84x in 3D than a CPU (Intel Core i7
965 3.2 GHz). Then multi-GPU schemes using MPI and GPUDirect
are presented in [17,18] to explore strategies for the data transfer
between GPUs that bottlenecked the efficiency of the simulation
and improve the peak and average speeds at different resolutions,
which achieved peak performances of 97.36 GFLOPS and 2 TFLOPS
in double precision. But their works aimed at finite difference
(FD) method, which relies on uniform meshes. Lani et al. [19]
discussed Object-oriented designs within the COOLFluiD frame-
work [20–22], which is based on a state-of-the-art finite volume
(FV) discretization on unstructured meshes and coding techniques
by mixing C++ and CUDA, and they acquired a series of speedup
ratios ranging 1.51x to 12.32x. Inspired by Lani et al.’s work, we try
to develop an easily implemented FV scheme and speed it up with
multiple GPU on the six-component grid system. With respect to
the domain of spherical shell, as far as I know, only Feng et al. [14,
23] have a trial to implement the Solar-Interplanetary-CESE (SIP-
CESE) MHD model [24] with a OpenCL-based GPU programming.
But due to the complexity of the model and no optimization, only
a speedup ratio of 5x is acquired. To give full play to devices, higher
performance should be exploitedwith some general optimizations
on the six-component grid.

In this paper, we first develop a new, spatially second-order
accurate finite volume (FV) solver for 3DMHDsimulationswith the
multiple time steps strategy, which is based on the six-component

grid for spherical shell domain. Different from previous works [13,
14,23–25] which are also based on the six-component grid, we
newly model on hexahedral cells and solve governing equations
in a relatively concise form by reducing 3D calculations to 1D with
rotation matrix. Then to speed up the simulation, we implement
the solver on multiple GPUs with CUDA optimizations and estab-
lish an effectivemulti-GPUFV solver on spherical shell domain. Our
computing environments are offered by TH-1HN supercomputer
fromNational Supercomputing Center in Hunan Province. TH-1HN
consists of 2048 nodes and each node is equipped with two Intel
Xeon E7540 CPUs and one Nvidia M2050 GPU.

Contents are organized as follows: the grid system and decom-
position are presented in Section 2. Then a brief description of the
FV solver is given in Section 3, including the governing equation
and the numerical methods. Section 4 details the implementation
of the proposed solver on multiple GPUs. In Section 5, we first
show a test case to validate the spacial accuracy of our solver
and measure average execution time and speedup ratios of using
MPI and multi-GPU techniques, and then apply the solver to the
solar wind evolution of a chosen Carrington rotation. Finally, we
conclude our works and discuss the future work in Section 6.

2. Grid system and decomposition

2.1. Six-component grid

In order to mitigate the well-known singularity and grid con-
vergence problem at the pole region of the spherical grid, Feng
et al. [13] proposed the six-component grid, which consists of six
identical grid components to envelope a spherical surface with
partial overlap on their boundaries, as shown in Fig. 1. The six
grid components have the same shape and size. Each component
is just a low latitude region of the usual latitude–longitude grid,
which is 90◦ about the equator and 90◦ in the longitude. The
latitude–longitude boundary value of each component grid can be
obtained by interpolation from the neighbor stencils lying in its
neighboring component grid. The vector and coordinate defined
in different components can be transformed straightforwardly. For
an example, the vector field defined in component 1 (i.e. u1 =

(u1, v1, w1)) and component 5 (i.e. u5 = (u5, v5, w5)) are related
by u5 = (−w1, v1, u1) and u1 = (−w5, v5, u5). For more detailed

Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193 183

Fig. 2. In the radial direction, the component c are equally divided into subdomains Dp
c , with p = 1, 2, 3 referring to each subdomain. Green represents the computation

zone, orange represents the boundary zone, and blue represents the ghost zone . (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

description of the six-component grid, one may refer to Feng
et al. [13].

The six-component grid has been utilized to simulate the evo-
lution of ambient solar wind as well as the solar eruption phenom-
ena [13,14,23–25]. Employing the six-component grid, one can
directly apply mathematical methods and numerical codes that
have been written for the spherical coordinate system. Efficient
and concise programs can be made since the grid components are
identical and the vector transformations are simple. However, ad-
ditional procedures, like vector transformations and interpolations
are required for each update.

To be specific, each component grid is defined in the spherical
coordinate by

(
π

4
− δ ≤ θ ≤

3π
4

+ δ) ∩ (
3π
4

− δ ≤ φ ≤
5π
4

+ δ), (1)

where δ is proportionally dependent on the grid spacing entailed
for the minimum overlapping area. Each component is confined
in the same region as that in Eq. (1), and divisions in θ− and φ−

directions take place as:

θȷ = θmin + ȷ∆θ, ȷ = −1, 0, . . . ,Nθ + 2
φℓ = φmin + ℓ∆φ, ℓ = −1, 0, . . . ,Nφ + 2 (2)

and
∆θ = (θmax − θmin)/(Nθ − 2)
∆φ = (φmax − φmin)/(Nφ − 2), (3)

where Nθ and Nφ are the mesh numbers of the latitude and lon-
gitude, respectively. θmin =

π
4 , θmax =

3π
4 , φmin =

3π
4 and

φmax =
5π
4 . In the case of solar wind simulation for the Sun to

interplanetary space, Feng et al. in [13] gave a suggestion of the
mesh division in radial direction for 1–25 Rs as:∆r(ı) = 0.01 Rs if
r(ı) < 1.1 Rs;∆r(ı) = min(A× log10(r(ı− 1)),∆θ × r(ı− 1)) with
A = 0.01/log10(1.09) if r(ı) < 3.5 Rs; and ∆r(ı) = ∆θ × r(ı − 1)
if r(ı) ≥ 3.5 Rs. Rs is the solar radius and also the scaling factor for
length. In this way, the discrete or geometrical stiffness caused by
disparate mesh cell widths can be mitigated.

2.2. Grid decomposition

Based on the six-component grid, the spherical shell domain
is decomposed into six identical components with a resolution of

(Nr ,Nθ ,Nφ), and the parallelization can be efficiently and well-
balanced implemented in the θ- and φ- directions. Besides, each
component in the radial direction is equally divided into Nn par-
titions, as is shown in Fig. 2. Green represents the computation
zones, orange represents the boundary zones, and blue represents
the ghost zones. The whole computation domain is divided into
subdomains Dp

c , with c = 1, . . . , 6 referring to the six components
and p = 1, . . . ,Nn referring to each partition in its component.
Therefore, the resolution of the computation zone in each subdo-
main should be (Nr

Nn
,Nθ ,Nφ).

In each subdomain, ghost zones (including boundary zones)
are set to surround the computation zone. Two layers of ghost
cells are used when calculating cells which are at the edge of the
computation zone with the spatially second-order, for the ghost
zone ensures that same treatments can be applied on all grid
cells in the computation zone. As the ghost cells’ locations are
beyond the computation zone of their subdomains, which actually
locate in the computation zone of their neighbor subdomains, the
ghost cells’ values can be acquired from the computation zone of
their neighbor subdomains. In the right picture of Fig. 2, the ghost
cells denoted with ‘L’ and ‘U ’ have the exactly corresponding cells
in their lower or upper neighbor subdomains and can be copied
directly. Fig. 3 presents the grid decomposition in the θ- and φ-
directions, and the ghost cells are denoted with ‘W ’, ‘E’, ‘S’ and ‘N ’,
respectively. ‘W ’, ‘E’, ‘S’ and ‘N ’ zones can easily be determined by
coordinate transformation and interpolation from their west, east,
south and north neighbor subdomains.

By utilizing the spherical mesh points generated above, we
take their corresponding cartesian coordinates, and form the cor-
responding hexahedral cells as is shown in Fig. 4. In what follows,
we describe the implementation of the governing equations on the
hexahedral cells in the Cartesian coordinate.

3. Governing equations and numerical methods

3.1. Ideal MHD equations

The idealMHDequations consist of a set of nonlinear hyperbolic
equations. With the generalized Lagrange multiplier (GLM), we
take the conservative form in Cartesian coordinate system as

∂tU + ∇ · F = S + Q, (4)

184 Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193

Fig. 3. The grid decomposition in the (θ, φ) directions. The ghost zones can easily
be determined by coordinate transformation and interpolation from their neighbor
subdomains . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Hexahedrons used in our solver.

with

U = (ρ, ρv,B, e, ψ)T (5)

and

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρv

ρvv + (p +
B · B
2

)I − BB

vB − Bv + ψI

v(e + p +
B · B
2

) − B(v · B)

c2hB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

U is the vector of conserved quantities, in which ρ is the mass
density, v = (vx, vy, vz) and B = (Bx, By, Bz) are the velocities
and the magnetic field in x-, y-, z- directions respectively, e =

ρ v2
2 +

p
γ−1 +

B2
2 is the total energy and p the pressure. γ is the ratio

of specific heats. ψ is introduced by GLM method to couple the
divergence constraint ∇ · B = 0 with the conservation laws [26].
In the flux tensor F, I is the 3 × 3 identity matrix. ch and cp are

constant coming up with the GLMmethod and defined [26,27] as:

ch :=
Ccfl

∆tn
hmin, c2p :=

hminch
ᾱ

ᾱ ∈ [0, 1], (7)

and hmin is the minimum height of all cells in every face’s normal

direction. S = (0, 0, 0, 0,− c2h
c2p
ψ)T is the numerical source vector

for GLM, and Q is the physical source vector for specific problems.

3.2. Finite volume formulation

The FV method of Eq. (4) on the hexahedral cells in the six-
component mesh grid can be written as

dUi

dt
+

1
Ωi

6∑
faceij=1

R−1(nij)Fx
(
R(nij)Ui,R(nij)Uj

)
Aij = Si + Qi. (8)

Ui refers to the volume-averaged conservative variables of the
calculated cell i, and Uj is that of the corresponding neighbor cell
j. As shown in Fig. 4, cells i and j share a common interface faceij.
Obviously, every cell i has six neighbor cells and six corresponding
interfaces, thus we number them as faceij = 1, 2, . . . , 6. Aij is the
area of the interface faceij, and nij is its outer unit normal vector.Ωi
is the volume of cell i. Fx is the function of the numerical flux term
in x-direction. Si and Qi are volume-averaged source terms. R is
the rotation matrix [26,28] that rotates the x-axis to the direction
of nij and R−1 rotates it back. In this way, we can consider flux
calculations only in x-direction about Fx. The definition of R and
R−1 about unit vector n is given as

R =

⎡⎢⎢⎢⎣
1

r1
r1

1
1

⎤⎥⎥⎥⎦ (9)

with

r1 =

[nx ny nz
t1x t1y t1z
t2x t2y t2z

]
, (10)

and

R−1
=

⎡⎢⎢⎢⎣
1

r1T
r1T

1
1

⎤⎥⎥⎥⎦ . (11)

t1 = (t1x, t1y, t1z) and t2 = (t2x, t2y, t2z) are unit vectors tangent to
the surface of the control volumeandorthogonal to each other [28].

As for the calculation of the numerical flux term F, a variety
of approximate Riemann solvers have been developed during the
past decades. Based on the numerical FV method, we not only
adopt two most typical solvers, Lax–Friedrichs and Roe [29], but
also try a hybrid scheme proposed in [30,31]. This hybrid scheme
uses the less dissipative Roe solver for the mainly smooth parts of
the flow as well as near contact discontinuities, while the more
dissipative Lax–Friedrichs solver is used near strong shocks. The
hybrid scheme is as follows,

Fhybrid = 0.5 ∗ (F(Ui) + F(Uj)) − 0.5 ∗ Dhybrid, (12)

with
Dhybrid = (1 − ω)DRoe + ωDLF,

DRoe = R(Uj − Ui)|Λ|R−1,
DLF = |λmax|(Uj − Ui).

(13)

DLF,DRoe andDhybrid are the dissipationmatrices for Lax–Friedrichs,
Roe and hybrid schemes. The pressure-based indicatorω ∈ [0, 1] is

Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193 185

Fig. 5. The program flow chart of the parallel implementation of CPUs and GPUs.

defined as ω =

⏐⏐⏐ pi−pj
pi+pj

⏐⏐⏐ 1
2
. In DRoe, R and R−1 are the mode synthesis

matrices of left and right eigenvectors, and Λ is the eigenvalue
matrix. λmax in DLF is the fastest wave speed evaluated at the
interface of cell i and j.

In order to achieve the second-order spatial accuracy, the lim-
ited linear least squares reconstruction proposed by Barth [32],
which shows good performance in many works [33–35], is em-
ployed for our solver. The general formula for the limited recon-
struction is used for the primitive variables W = (ρ, v,B, p, ψ)T
on cell i:

W (k)
i (x̃r) = W̄ (k)

i + φ
(k)
i ∇W (k)

· (x̃r − x̃i). (14)

x̃i is the position of cell i’s centroid, and x̃r is the position of the
point to reconstruct about cell i. Herewe usually take x̃r as centroid
of cell i’s face. W̄ (k)

i is the kth component of the primitive vector at
x̃i. ∇W (k) is the least-squares gradients, which is calculated using
the cell-centered values in neighboring cells, by locally solving
a non-square system for the gradient of W (k) by a least-squares
approach [33]. Following Ivan’s work in [35], we use a 27-point
reconstruction stencil in order to provide better robustness against
non-uniformity in the grid and solution gradients that are not
aligned with the grid. A widely used choice for the slope limiter φi
proposed by Venkatakrishnan [36], is employed, which is believed
to not only producemonotone solutions and devoid of oscillations,
but keep the accuracy and convergence.

4. Multi-GPU implementation

Based on TH-1HN cluster that each node has two Intel Xeon
E7540 CPUs and one Nvidia M2050 GPU, each subdomain is as-
signed to one node and the computation zone is integrated by its
corresponding GPU. After every integration step, ghost cells can be
updated by the communication with their neighbor subdomains
via MPI. Fig. 5 presents the program flow chart of the parallel
implementation of CPUs and GPUs. As described in this flow chart,
CPUs control the program’s main flow including initialization, data
copy between CPUs and GPUs, loop control and MPI communica-
tion.While intensive calculation is distributed onGPUs by invoking
a series of CUDA kernels.

4.1. Storage of meshes and state variables

We initialize the six-component grid system on the host of each
node, including the arrays ofmesh information in each subdomain,
and then copy them to GPU’s global memory. Considering the
centroid’s coordinate is 3D as (x, y, z), we store every coordinate
component in one array separately, for the purpose of avoiding
non-unit-stride global memory accesses whenever possible. The
3D meshes are stored as 1D arrays in a contiguous address space,
which are allocated by cudaMalloc(). We also use cudaBindTex-
ture() to bind texture references to these arrays, which enables
these arrays to be read through the read-only texture cache by
tex1Dfetch().

186 Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193

Fig. 6. The exchange information between six-component grid by using multi-stream method.

Primitive variables of each subdomain, (ρ, vx, vy, vz , Bx, By, Bz , p,
ψ) are initialized on the host, and then copied into global memory.
Likewise, nine variables are separately stored in nine 1D arrays.
In order to avoid a race condition during integration, we allocate
another set of memory, i.e. (ρ∗, v∗

x , v
∗
y , v

∗
z , B

∗
x , B

∗
y , B

∗
z , p

∗, ψ∗) ,
to separate arrays that are used for reading and writing. Initially,
reading pointers ∗pin[9] are set to the former set of memory, and
writing pointers ∗pout[9] are set to the latter set. After each inte-
gration step, state variables pointed by ∗pout[9] are updated, and
then the memory addresses pointed by ∗pin[9] and ∗pout[9] are
swapped for the next integration step. Besides, the intermediate
result arrays of the reconstructed values at facial centroids of each
cell are stored in global memory (denoted as fsArray[]) in the same
manner.

4.2. Primary kernels

As presented in Fig. 5, three primary and most time-consuming
kernels are invoked:

• calculate_dt_kernel calculates the time step∆t;
• reconstruct_LLS_kernel reconstructs state variables at facial

centroids using linear least square method;
• integrate_U_kernel calculates Un+1 with the FV method.

All these three kernels are implemented as a parallel cell-based
loop, in which each cell is mapped onto a GPU thread. A 1D GPU
thread grid is used to be in accordance with the arrays of cells
(i.e. meshes and state variables), in which each cell is associated
with a unique ID. The number of threads per block BLOCK_SIZE is
defined as 32, and the number of blocks for the kernel is computed
by (N + BLOCK_SIZE − 1)/BLOCK_SIZE, in which N is the local
number of mapped cells in the subdomain. Through there is a
loop over six facial centroids in each cell in the reconstruction, a
parallel cell-based loop should be more effectively than the face-
based loop. Because the six facial centroids are calculated on the
same 27-cell stencil, and the cell-based reconstruct_LLS_kernel
can deal with the six facial centroids intensively. When it comes
to the convective flux of each face, following Lani et al.’s experi-
ment [19] that associating a different thread to each face would
have required thread synchronization and undoubtedly affect the
overall performance, we choose a cell-based loop for the convec-
tive flux as well. As for the source term, it all depends on the cell it
belongs to, so a cell-based loop is suitable. Considering these and
with the state variables of facial centroids precomputed in recon-
struct_LLS_kernel, we set the calculation of the convective flux
and source term into integrate_U_kernel and solve Eq. (8) in each
cell. Listing 1 is the pseudo code of integrate_U_kernel, showing
how the cells aremapped onto threads and the computation of flux

and source term in the cell-based loop. Listing 2 gives a description
of the gridInfo structure.

As shared memory has much higher bandwidth and lower la-
tency than local and global memory, and can be visited by all the
threads in its block, When we seek the minimum ∆t among all of
the cells, ∆t of each cell is calculated by the calculate_dt_kernel
and stored in shared memory as an array dt_shared[blocksize].
Then half of threads do the comparison between two element of
dt_shared and update the corresponding shared memory with the
preferred value. In the next step, half of them do this again. Repeat
this process until a relatively small number of threads are left.
Finally, we only copy target data of each block to CPUs for the
minimum∆t .

4.3. Boundary treatment and communication

The ghost zone in each subdomain should be updated, after the
Un+1 in the computation zone are calculated. Generally, for the
ghost cells that have adjacent subdomains, i.e. the blue zones in
Figs. 2 and 3, their state values can be found or interpolated in the
computation zone of their neighbor subdomains, and acquired by
communication via MPI. For the ghost cells that are near the inner
and outer boundary of the whole computation domain, i.e. the
orange zones in Fig. 2, special treatments are required according
to boundary conditions.

In r− direction, for the subdomain that contains orange zones, a
cell-based loop over the innermost or outermost layer is utilized by
the treat_boundary_kernel. Details of boundary condition will be
explainedwith the tests in Section 5. Blue zones in each subdomain
are ghost cellswhose corresponding cells can be directly found and
copied in neighbor subdomains. To acquire their data from neigh-
bor GPUs, procedures contain GPU-to-host, MPI communication
and host-to-GPU.

In θ− and φ− direction, as depicted in Fig. 3, ghost cells in
blue come from their neighbor subdomains based on the six-
component grid. Two steps are required before the communication
between each node. First is to interpolate data that are to be sent to
west-, east-, south-, north-neighbor by linear least square method
in GPUs, and then to copy those data to host for MPI communica-
tion. By usingmulti-stream as depicted in Fig. 6, data sent to west-,
east-, south-, north-neighbor are calculated and copied in different
streams. In this way, execution of kernels and cudaMemcpyAsync
are task parallel in time and shorten the consuming time.

4.4. Multiple time stepping

At the solar wind background of our research, the plasma den-
sity, the alfven velocity, magnetic field, the plasma β and spatial
grid size vary greatly with heliocentric distance, implying a large

Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193 187

Listing 1: integrate_U_kernel
/∗∗∗ in tegrate_U ∗∗∗ /
__global__ void integrate_U_kernel (
double ∗pOut [] , double ∗pIn [] , double fsArray [] , g r id In fo grid) {

threadID = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;
N = grid . NCr∗grid . NCt∗grid .NCp / / the number o f mapped c e l l s
i f (threadID <N) {

/∗∗∗map the c e l l onto the thread∗∗∗ /
idxr = threadID / grid . NCt∗grid .NCp;
idxt = (threadID i∗grid . NCt∗grid .NCp) / grid .NCp;
idxp = threadID i∗grid . NCt∗grid .NCp j∗grid .NCp;
idxr = idxr+grid .NG;
idxt = idxt+grid .NG;
idxp = idxp+grid .NG;
idx I = idxr ∗(gr id . NTt∗grid .NTp)+ idxt∗gird .NTp+idxp ;

/∗∗∗compute f l u x∗∗∗ /
fluxSum = 0.0
for (face =1; face <=6; face ++){

getNeighborJ (& idxJ , face , idxr , idxt , idxp) ;
ge tFac i a l In fo (& area I J , n I J , idxI , face) ;
ge tFac ia lS ta te (&rhoI ,&pI ,& ps i I , vI , B1I , B0I , fsArray , idxI , face) ;
ge tFac ia lS ta te (&rhoJ ,&pJ ,& ps i J , vJ , B1J , B0J , fsArray , idxJ , face) ;
rotate (vIr , vJr , B0Ir , B0Jr , B1Ir , B1Jr , \

vI , vJ , B0I , B0J , B1I , B1J , n I J) ;
computeFlux (f l ux I J r , rhoI , pI , ps i I , vIr , B1Ir , B0Ir , \

rhoJ , pJ , ps i J , vJr , B1Jr , B0Jr) ;
reverse (f l u x I J [face] , nI J , f l u x I J r) ;
fluxSum += f l u x I J∗a rea I J

}

/∗∗∗compute source term∗∗∗ /
getCe l lS ta te (&rho ,&p,& psi , v , B1 , B0 , idxI , pIn) ;
computeSourceTerm(soureTerm , rho , p , psi , v , B1 , B0) ;

/∗∗∗ i n t e g ra t e s t a t e va r i ab l e s∗∗∗ /
integrateU (pOut , fluxSum , soureTerm , volume , dt)

}
}

Listing 2: gridInfo structure
struct gr id In fo {

int NCr ; / / the number o f computational c e l l s in the r d i r e c t i on
int NCt ; / / the number o f computational c e l l s in the theta d i r e c t i on
int NCp; / / the number o f computational c e l l s in the phi d i r e c t i on
int NG; / / the number o f ghost c e l l s ’ l a ye r s
int NTr ; / / the t o t a l number o f c e l l s in the r d i r e c t i on , NTr=NCr+2∗NG
int NTt ; / / the t o t a l number o f c e l l s in the theta d i r e c t i on , NTt=NCt+2∗NG
int NTp; / / the t o t a l number o f c e l l s in the phi d i r e c t i on , NTp=NCp+2∗NG
. . .

} ;

variation of the CFL stability constraints as well as the time step
from the corona to interplanetary space [13]. The multi-time-
stepping method was proposed in [37,38] to take different time
steps in different parts of the gridwith large spatial grid difference,
and it can avoid the necessity of taking a single time step in
the whole computation domain determined by the numerical CFL
stability conditions. Using this method, we can not only keep the
numerical simulation steadily forward, but reduce heavily calcu-
lation and shorten the computing time. According to [37,39], we
divide our domain in the radial direction into areas with A1

c in the

range of 1–3.5 Rs, A2
c in the range of 3.5–10 Rs and A3

c in the range of
10–25 Rs (c = 1, . . . , 6 referring to each component), as is shown
the left in Fig. 7. We first calculate the time step ∆tnc for every
area An

c by using the CFL stability condition and unify∆tn with the
minimum value among six components, i.e.∆tn = min1≤c≤6(∆tnc).
Then modify the time step∆tn (n > 1) by

Mn
= int(∆tn+1/∆tn), ∆tn+1

= Mn∆tn

(n = 1, 2 successively).

188 Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193

Fig. 7. Time stepping method with the computation domain division.

Fig. 8. L1 , L2 and L∞ error norms in density for the manufactured MHD solution.

When every An
c calculates Mn loops with ∆tn, the An+1

c advances a
single step of ∆tn+1. After A1

c advancing M2
× M1 steps of ∆t1, A2

c
advancing M2 steps of∆t2, and A3

c advancing a step of∆t3, all the
three areas reach the same time level and another set of time steps
∆tn for each area An

c is determined again.
Well-balanced calculation’s load should also be consideredwith

the multiple time stepping method. Directly distributing every
area An

c with one or more processors has been used in the present
works [13,25]. Even though we can manually adjust the allocation
of computing resources on every areas An

c due to the different
calculation loops, it is still difficult to generally balance all the
processors. This is because that every area may have a different
number of cells andmesh decomposition is hard to decide.What is
more,with the calculation advancing,∆tn varies andMn are unsure
in advance. So we proposed another strategy as is shown the right
in Fig. 7. Every area is equally divided in the radial direction into
a same number of subdomains, according to the mesh decompo-
sition described in Section 2.2. Here we denote subdomains as
Dp,n
c with c meaning the component, n meaning the area and p

meaning the partition number in the area. Then every processor
Pp
c is allocated with subdomains Dp,1

c Dp,2
c and Dp,3

c , meaning that
every processor calculates a part of areas A1, A2 and A3. In this way
all of the processors are equally loaded and are fully utilized with
as short computing time as possible. It should be noticed that in

A2
c , the order of the subdomains is contrary to that in A1

c and A3
c , to

avoid some data transfers of the boundary of areas between GPUs.

5. Numerical results

5.1. MHD manufactured solution

To validate the grid system for spherical shell and the proposed
multi-GPU FV solver, we adopt the test case of a 3D steady-state
axi-symmetric solution of a MHD plasma on a spherical shell do-
main flowing outward at superfast speeds, proposed by Ivan et al.
in [35]. Average execution time and speedup ratios of usingmulti-
GPU techniques are also measured in this case. We should notice
here that, in this paper, every test program is run for five times
and the average execution time is measured. The exact solution is
specified with the primitive variables as:

W = (R−
5
2 ,

x
√
R
,

y
√
R
,

z
√
R

+ κR
5
2 ,

x
R3 ,

y
R3 ,

z
R3

+ κ, R−
5
2 , 0)T , (15)

with a source term added to the ideal MHD equations, i.e.

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2
xR−

5
2 (R−1

− 5R−2
− κz)

1
2
yR−

5
2 (R−1

− 5R−2
− κz)

1
2
zR−

5
2 (R−1

− 5R−2
− κz) +

5
2
R−

1
2 κ(1 + κRz) + κR−

1
2

0⃗
1
2
R−2

+ κz(3.5R−1
+ 2κz) +

(κR)2

2
(7 + 5κRz)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

The ratio of plasma specific heat is γ = 1.4, and the perturbation
parameter is taken as κ = 0.017 to keep the solution significant in
latitudinal variation and the flow supersonic in the domain. The
magnetic field is irrotational and aligned with the velocity such
that v×B = 0 everywhere. The computation domain in this case is
defined by inner and outer spheres of radius Ri = 2 and Ro = 3.5,
respectively. The inner boundary condition is specified based on
the exact solution while the outer uses linear extrapolation.

In Fig. 8, the L1, L2 and L∞ error norms in density are obtained on
a series of mesh divisions with the resolution of each component

Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193 189

Table 1
Average total execution time and speedup ratios of 1000 time-step loops on GPUs
and CPUs.
Mesh resolution per component 6 GPUs (s) 6 CPU processes (s) Speedup (x)

21 × 62 × 62 55.80 1571.52 28.16
36 × 102 × 102 245.64 7026.66 28.61

Mesh resolution per component 18 GPUs (s) 18 CPU processes (s) Speedup (x)

36 × 102 × 102 93.40 2594.05 27.77
71 × 202 × 202 635.45 19,099.30 30.06

Table 2
Average total execution time and speedup ratios of 1000 time-step loops on GPUs
and CPUs, with cell number and device number in proportion.
Mesh resolution per
component & device
number

GPUs (s) CPU processes (s) Speedup (x)

36 × 102 × 102 & 6 245.64 7026.66 28.61
72 × 102 × 102 & 12 248.09 7330.07 29.55
108 × 102 × 102 & 18 249.83 7356.97 29.45

(Nr ,Nθ ,Nφ) ranging from 13 × 22 × 22 to 71 × 202 × 202,
namely from 37752 to 17382504 cells in total. With refinement
of the grids, the lines of L1, L2 and L∞ norms have slopes of
about −2.1601308477, −2.0872626565 and −2.0271203117, re-
spectively. This implies that the second-order theoretical accuracy
of the solver are achieved in all the error norms for smooth but
non-radial flows with a magnetic field, and validates the specified
spatial discretization procedure on the six-component grid.

Table 1 presents the average total execution time of 1000
time-step loops on GPUs and CPUs, and the speedup ratios be-
tween them. Mesh resolutions of 21 × 62 × 62, 36 × 102 × 102
and 71 × 202 × 202 per component, corresponding to 484 344,
2 247 264 and 17 382 504 cells in total, are chosen for general mea-
surements. By employing 6GPUs and 6 CPU processes respectively,
we get speedup ratios of 28.16x on the mesh of 21 × 62 × 62
per component, and 28.61x on the mesh of 36 × 102 × 102.
When comparing 18 GPUs and 18 CPU processes, the formers are
27.77x and 30.06x times faster than the latters, on the meshes of
36 × 102 × 102 and of 71 × 202 × 202, respectively. With the
same number of GPUs, we can easily see that the denser the mesh
is, the more significant speedup ratio is achieved.

To validate the scalability of the solver on GPUs and CPUs, we
measure the average total execution time and the speedup ratios of
1000 time-step loops on GPUs and CPUs, with the cell number and
device number in proportion, as is shown in Table 2. The speedup
ratios keep almost the samewhen the processing unit number goes
up, along with the problem size, which shows very nice scalability.

Table 3 presents the average execution time of primary com-
putation modules with the mesh resolution of 36 × 102 × 102
per component on 6, 12 and 18 GPUs, respectively. We can easily
find that the reconstruct_LLS_kernel is most time-consuming
and accounts for more than 60% on 6, 12 and 18 GPUs, which
is due to its calculation complexity. Compared with the case of
6 GPUs , the average execution time of calculate_dt_kernel, re-
construct_LLS_kernel and integrate_U_kernel on 12 GPUs gets
speedup ratios of 1.91x, 1.89x and 1.91x respectively. While the
speedup ratios of them on 18 GPUs are 2.96x, 2.73x and 2.95x
respectively. The speedup ratios are in relatively accordance with
the number of GPU and are reasonable. Besides, we also no-
tice that, on both 12 and 18 GPUs, the speedup ratios of the
reconstruct_LLS_kernel are a little lower than those of calcu-
late_dt_kernel and integrate_U_kernel. This is because that, in
the reconstruct_LLS_kernel, not only the computation zone but
a layer of ghost cells should be mapped onto threads, and extra
calculation will affect the speedup ratio. By using multistream
method, the treatment of six-component boundary costs 13.35 ms

on 6 GPUs, 6.87 ms on 12 GPUs and 5.43 ms on 18 GPUs. Other
module contains copying boundary data fromGPU to the host, MPI
communications between different nodes, copying boundary data
back to GPU and some trivial operations. It takes 7.33 ms, 7.30 ms
and 7.31 ms in every case and correspondingly accounts for 2.98%,
5.0% and 7.83% of their total time, respectively. It causes extra
overheads on distributed multi-GPU systems, and is difficult to
proportionally reduce. The average execution time of this module
is almost the same, but with the increment of GPUs, the communi-
cation overhead between different nodes accounts more and will
become the bottleneck of speedup ratios. Only when the number
of computing devices matches with data granularity, can we get a
considerable and worthy speedup ratio on the whole. In this view,
total speedup ratios of 1.85x and 2.63x with 12 and 18 GPUs are
reasonable.

5.2. Solar wind simulation

We test this solver by solving the solar wind evolution, which is
governed by the modified MHD equations. When solving the MHD
equations in a (near) conservation form, it is very important to split
the magnetic field B into a time-independent potential magnetic
field B0 and a time-dependent deviation B1, i.e. B = B0 + B1
[13,19,40,41]. The reason is that the total energy density can be
completely dominated by themagnetic energy B0

2/2 near the Sun,
which can lead to negative pressure if calculated from the total
energy density. Splitting B can mitigate this problem effectively
near the Sun. As for small plasma β regions, it is inherently more
accurate to solve for the deviation B1 from the embedded field B0
than to solve for the full magnetic field vector B. The source term
is defined as

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
j0 × B0 + ρ [g − Ω × (Ω × r)] − 2ρΩ × v + Sm

−
∂B0

∂t
−B1 ·

∂B0

∂t
+ E · j0 + ρv · [g − Ω × (Ω × r)] + Qe + v · Sm

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(17)

with E = v × B, j0 = ∇ × B0. t and r are time and position
vector originating at the center of the Sun, g = −GM/r3 · r is the
solar gravitational force,Ω is the solar angular speed and γ = 1.05
is the ratio of specific heats. ρ, v, p, B, r, t , and g are normalized by
the characteristic values ρS, a0, ρSa20,

√
ρSa20, RS, RS/a0, and a20/RS ,

where ρS , a0 and RS are the density, sound speed on the solar
surface and solar radius. The solar rotation is considered in the
present study with angular velocity |Ω| = 2π/25.38 radian day−1

(here normalized by a0/RS). Sm and Qe stand for the momentum
and energy source terms, which are responsible for acceleration
and heating of the solar wind. Taking into account the magnetic
field topology effects [42] with a expansion factor ‘‘fS ’’ in them, the
volumetric heating function and momentum source term are

Sm = M(
r
RS

− 1) exp(−
r
LM

) · r/r, (18)

Qe = Q1 exp(−
r
LQ1

) + Q2(
r
RS

− 1) exp(−
r
LQ2

). (19)

Details about those parameters are described by Feng et al. in [13].
To test the GPU-solver’s capability, we numerically study the

ambient solar wind of Carrington rotation (CR) 2060 in the
descending phase of solar cycle 23 lasting from August 21 to
September 17 in 2007. As the solar activity is relatively low in
this period and the solar corona has a typical and characteristic
structure, CR 2060 is a preferred choice and has been studied in
many researches [43,44]. We utilize the line-of-sight photospheric

190 Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193

Table 3
Average execution time and speedup ratios of primary computation modules on GPUs, with the mesh resolution of
36 × 102 × 102 per component.
Computation module 6 GPUs 12 GPUs 18 GPUs

Time (ms) Percentage Time (ms) Speedup (x) Time (ms) Speedup (x)

calculate_dt_kernel 8.70 3.54% 4.55 1.91 2.94 2.96
reconstruct_LLS_kernel 162.71 66.25% 86.11 1.89 59.58 2.73
integrate_U_kernel 53.51 21.79% 28.01 1.91 18.11 2.95
Treat six-component boundary 13.35 5.44% 6.87 1.94 5.43 2.46
Others 7.33 2.98% 7.30 1.0 7.31 1.0
Total 245.60 100.00% 132.84 1.85 93.40 2.63

Table 4
Average execution time and speedup ratios of the CR 2060 solar wind simulation to
reach a steady state.
Mesh resolution per
component

18 GPUs (h) 18 CPU
processes (h)

Ratio of
speedup (x)

138 × 62 × 62 9.39 268.64 28.61
210 × 102 × 102 36.71 1074.66 29.28

magnetic data from the Global Oscillation Network Group (GONG)
program to produce a 3D global magnetic field in the computation
domain with the potential field (PF) model, and specify it as the
time-independent B0. B1 is initially set as zero. The initial distri-
butions of plasma density ρ, pressure p and velocity v are given by
Parker’s solarwind flow [45]. The temperature and number density
on the solar surface are TS = 1.3× 106 K and ρS = 1.5× 108 cm−3

respectively. With the spherical shell domain, two boundaries
should be designated: the inner boundary of the solar surface
at 1 Rs, and the outer boundary at 25 Rs. As the six-component
grid is of sphere-surface body-fitting, it is easy to implement the
inner boundary conditions at the solar surface. For the steady
simulation of the ambient solar wind, the inner boundary is fixed.
Since the outer boundary in interplanetary is a supersonic/super-
Alfvenic region, state variables at the outer boundary are simply
extrapolated to boundary ghost cells in the radial direction.

5.2.1. Time measurement
We adopt the six-component grid with the mesh resolution of

138 × 62 × 62 and 210 × 102 × 102 per component, covering the
space from the Sun’s surface to beyond 20 solar radius spherical
surface, thus offer a model for the research of corona activities.
The average execution time of simulations is compared between
18 GPUs and 18 CPU processors.

We measure the calculation time that the background solar
wind simulation need to reach a steady state for CR 2060. As
is shown in Table 4, it need about 268.64 h (about 11.19 days)
and 1076.66 h (about 44.7 days) to finish these work on 18 CPU
processors, but only 9.39 h and 36.71 h with GPUs. And speedup
ratios of 28.61x and 29.28x are achieved by 18 GPUs on the six
component grid, with the mesh resolution of 138 × 62 × 62
and 210 × 102 × 102 per component (3,182,832 and 13,109,040
meshes in total), which are our frequently used mesh division
schemes. The average execution time is sharply reduced to achieve
real-time simulation.

In the previous work by Feng et al. [14,23], they measured the
execution time on 24 GPUs (including 10 T C1060 and 14 T C2050)
and on same CPU processes. They acquire a speedup ratio of 5x
without any GPU optimization. However, by taking into account of
some general GPU optimizations as well as the load balance con-
sideration, we achieve relatively considerable speedup ratios on
18 TM2050GPUs. And aswe have demonstrated in Section 5.1 that
the solver shows very nice scalability, the speedup ratio will main-
tain when the number of GPUs goes up along with the problem
size.

5.2.2. Comparisons with observations
For the purpose of validating the simulated results, we com-

pare them with the available coronal observations. Some distinct
features include multiple coronal streamers, heliospheric current
sheets (HCSs) with significantly high inclination and sparser and
cooler fast solar wind, and temporal profiles of the radial speed
and radial magnetic field polarities are analyzed with these com-
parisons.

Synoptic maps at 2.6 Rs Fig. 9 presents the synoptic maps
at 2.6 Rs for CR 2060. Pictures in the top row show the maps of
white-light polarized brightness (pB) at the east and west limbs
observed by SOHO/LASCO-C2, with the bright areas in pB images
often indicating high-density structures near the sky plane along
the line of sight through these points. In the bottom row, the MHD
simulated number density N and radial speed Vr are presented
with units of 105 cm−3 and km s−1 respectively. The black lines
denote the magnetic neutral lines from the MHD model, while
white lines from the PFSS model. We can see that the magnetic
neutral lines calculated from both the MHD and PFSS models
are surrounded by the bright white-light structures at the east
and west limbs, which are identified as the streamer belts. The
locations of the bright structures in the white-light pB images
are characterized by the relatively low velocity and high plasma
density in the simulation, while the dark regions correspond with
the locations of the increased flow speed and decreased plasma
density. Two characteristically warped structures in the streamer
belt, located betweenφ = 90◦

−200◦ andφ = 200◦
−260◦ inmid-

and low-latitude, produce the dark regions in white-light images
at the east and west limbs, which is spatially coincident with the
low-density high-speed flow.

Comparison at meridian plane In Fig. 10, we compare the
results on meridian planes at φ = 180◦

− 0◦ from observations
and simulations to further demonstrate that our MHD solution
can describe the specific coronal observations. The left presents
the coronal images from 2.3 to 6 Rs observed by SOHO/LASCO-C2,
which are taken at the seventh day during rotations,while the right
presents the pB images of the simulated results from 1.5 to 6 Rs,
which correspond to the same plane with the left. We can find
that these streamer-like structures do not extend radially outward
from their foot points, but cover relatively large latitudes near the
Sun [43]. In the observatory picture, the brightest and sharpest two
structures are observed on the right limb, covering the latitude
from 30◦N to 45◦S. On the left limb, there are two bright structures
at the latitude of 40◦N and 40◦S. All the four obvious streamer-like
structures are captured at almost the same latitudes in simulated
results, though streamers appear shorter.

Fig. 11 shows the simulated steady solar coronal solution at the
plane of φ = 180◦

− 0◦ (top row) and φ = 270◦
− 90◦ (bottom

row). The color contours stand for the radial speed Vr and number
density N, while streamlines denote the magnetic field lines. The
magnetic field lines at high latitudes extend into interplanetary
space and the solar wind in this region has relatively high velocity
and low density. While the low velocity and high density solar
wind is located at lower latitudes around the HCS.

Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193 191

Fig. 9. Synoptic maps at 2.6 Rs for CR 2060. In the top row are the white-light pB observations at east and west limbs from SOHO LASCO C2, and in the bottom row are
simulated number density N (unit: 105 cm−3) and radial velocity (unit: km s−1). Black lines denote the magnetic neutral lines from MHD models, while white lines from
PFSS models.

Fig. 10. The coronal observation and simulated result on the meridional plane at φ = 180◦
− 0◦ for CR 2060. The left is the coronal image from 2.3 to 6 Rs observed by

SOHO/LASCO-C2, and the right is the pB image of simulated result from 1.5 to 6 Rs .

Comparison with OMNI data at 20 Rs As our simulation
ranges from 1 Rs to more than 20 Rs, we map the interplanetary
measurements back to 20 Rs by using a ballistic approximation,
in which the variations in longitude are computed from the time
interval required for a plasma parcel traveling from 20 Rs to the
spacecraft location with the in-situ measured solar wind veloc-
ity [43]. The interplanetary observational data are obtained from
the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.
gov. Temporal profiles of the radial solar wind speed and the radial
magnetic field polarities from the mapped observational results of
the OMNI data (black lines or diamonds) at 20 Rs and the simulated
results (red lines) are presented. We can see from Fig. 12 that
basically the same trend is followed by the profiles of the solar
wind from both the in-situ observation and the simulated result. In
the temporal profile of the radial solarwind speed on the left panel,
the most distinct two high-speed streams at Longitudes 120◦ and
230◦ are precisely captured by the simulated result, at the speed
of about 650 km s−1, and the small trough near the first high-
speed stream is even captured at Longitude 125◦. This implies that
our model can accurately simulate the arriving time of high-speed
streamers. However, it also contains some minor discrepancies.

The trough at Longitude 100◦ is missed. The simulated low-speed
streamer at Longitude 295◦ is about 400 km s−1, which is higher
than the observed 300 km s−1. As far as the polarities of the
radial magnetic field are concerned, we can see in the right panel
in Fig. 12 that these different sectors simulated by our model
are roughly in accordance with that from the observations, even
though the crossing longitudes are not well aligned with small
deviations. There are a few errors as well, and this is because the
waves and perturbations in the field can lead the opposite polarity
to be measured rather than the true field polarity [43,46]. In order
to quantitatively demonstrate the simulating ability of our model,
we define the hit ratio as the ratio that the simulated polarities are
the same with the corresponding mapped observational ones, and
the hit ratio of CR 2060 is 74.03%.

6. Conclusion

In this paper,we develop a new, spatially second-order accurate
finite volume (FV) solver for the 3DMHD equations, which is based
on the six-component grid for the spherical shell domain. And then,
we implement it on GPUs to speedup the simulation. Performances

http://omniweb.gsfc.nasa.gov
http://omniweb.gsfc.nasa.gov
http://omniweb.gsfc.nasa.gov

192 Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193

Fig. 11. Solar coronal solution for radial velocity Vr (unit: km s−1), number density N (unit: log10 cm−3) and magnetic fields at φ = 180◦
−0◦ (top row) and φ = 270◦

−90◦

(bottom row), ranging from 1 to 20 Rs .

Fig. 12. Comparisons at 20 Rs between the mapped measurements from OMNI data (black lines or diamonds) and the models’ results (red lines) for CR 2060. The left is the
temporal profile of the radial speed Vr with unit: km s−1 , and the right is the profile of the radial magnetic field polarities, with ‘‘+1’’ standing for the radial magnetic field
away from the Sun and ‘‘−1’’ towards the Sun . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of them are measured and compared in this work. Firstly, in the
MHD manufactured solution problem, we validate that the ex-
pected second-order accuracy has been achieved. Speedup ratios
of 27x to 30x are obtained by a series of performance’s com-
parisons between CPUs’ and GPUs’ implementation, which show

GPUs’ advantages in those high arithmetic intensity calculation.
Besides, we conclude that both solvers have nice scalability, but
communication overhead between different nodes will become
the bottleneck of speedup ratiowith the increasement of GPUs, and
should match the increased number of GPUs with data granularity

Y. Wang, X. Feng, Y. Zhou et al. / Computer Physics Communications 238 (2019) 181–193 193

to get a considerable and worthy speedup. Then we apply both
solvers to solar wind simulation from the Sun’s surface to more
than 20 Rs spherical surface. The multi-GPU FV solver obtains
speedup ratios of about 29.0x. From comparisons of the simulated
results and the observations about CR 2060, we can see that the
multi-GPU FV solver can basically capture the features of the mul-
tiple coronal streamers, HCSs and temporal profiles of the high and
low speed solar wind. It shows roughly agreement in the shapes
and distributions of corona between simulations and observations,
and implies that the multi-GPU FV solver has good suitability and
high efficiency in the study of corona.

In future work, the effective multi-GPU FV solver will be de-
voted to other topics in solar-terrestrial numerical studies, such
as the numerical modeling of the solar disturbance propagation
in the solar corona and the solar wind background from the Sun
to Earth. Besides, optimizations of GPUs’ implementation will be
further explored.

Acknowledgments

The work is jointly supported by the National Natural Science
Foundation of China (Grant Nos. 41531073, 41731067, 41574171,
and 41874202) and the Specialized Research Fund for State Key
Laboratories. This work utilizes data obtained by the Global Os-
cillation Network Group (GONG) program, managed by the Na-
tional Solar Observatory, which is operated by AURA, Inc. under
a cooperative agreement with the National Science Foundation.
The SOHO/LASCO data used here are produced by a consortium
of the Naval Research Laboratory (USA), Max-Planck-Institut fuer
Aeronomie (Germany), Laboratoire d’Astronomie (France), and the
University of Birmingham (UK). The OMNI data are obtained from
the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.
gov. The computing environments of this work are offered by
TH-1HN supercomputer from National Supercomputing Center in
Hunan Province.

References

[1] A.V. Usmanov, M. Dryer, Solar Phys. 159 (1995) 347–370.
[2] S.T. Wu, W.P. Guo, D.J. Michels, L.F. Burlaga, J. Geophys. Res. 104 (1999)

14789–14801.
[3] J.A. Linker, Z. Mikic, D.A. Biesecker, R.J. Forsyth, S.E. Gibson, A.J. Lazarus,

A.R. Lecinski, P. Riley, A. Szabo, B.J. Thompson, J. Geophys. Res. 104 (1999)
9809–9830.

[4] D. Odstrcil, J.A. Linker, R. Lionello, Z. Mikic, P. Riley, V.J. Pizzo, J.G. Luhmann, J.
Geophys. Res. 107 (2002).

[5] X.S. Feng, C.Q. Xiang, D.K. Zhong, Q.L. Fan, Chin. Sci. Bull. 50 (2005)
672–678.

[6] K. Hayashi, Astrophys. J. Suppl. Ser. 161 (2005) 480.
[7] F. Shen, X.S. Feng, S.T. Wu, C.Q. Xiang, J. Geophys. Res. 112 (2007).
[8] P.L. Israelevich, T.I. Gombosi, A.I. Ershkovich, K.C. Hansen, C.P.T. Groth, D.L.

Dezeeuw, K.G. Powell, Astron. Astrophys. 376 (2001) 288–291.
[9] T. Tanaka, J. Geophys. Res. 108 (2003).

[10] X.S. Feng, Y.F. Zhou, S.T. Wu, Astrophys. J. 655 (2007) 1110.

[11] J. Kleimann, A. Kopp, H. Fichtner, R. Grauer, Ann. Geophys. 27 (2009)
989–1004.

[12] C. Ronchi, R. Iacono, P.S. Paolucci, J. Comput. Phys. 124 (1996) 93–114.
[13] X.S. Feng, L.P. Yang, C.Q. Xiang, S.T. Wu, Y.F. Zhou, D.K. Zhong, Astrophys. J.

723 (2010) 300.
[14] X.S. Feng, D.K. Zhong, Y. Xiang, C. Q. Zhang, Sci. China Earth Sci. 56 (2013)

1864–1880.
[15] P. Wang, T. Abel, R. Kaehler, New Astronomy 15 (2010) 581–589.
[16] H.-C. Wong, U.-H. Wong, X.S. Feng, Z. Tang, Comput. Phys. Comm. 182 (2011)

2132–2160.
[17] U.-H. Wong, H.-C. Wong, Y. Ma, Comput. Phys. Comm. 185 (2014a) 144–152.
[18] U.-H. Wong, T. Aoki, H.-C. Wong, Comput. Phys. Comm. 185 (2014b)

1901–1913.
[19] A. Lani, M.S. Yalim, S. Poedts, Comput. Phys. Comm. 185 (2014) 2538–2557.
[20] A. Lani, T. Quintino, D. Kimpe, H. Deconinck, S. Vandewalle, S. Poedts, Interna-

tional Conference on Computational Science, Vol. 3514, 2005, pp. 279–286.
[21] A. Lani, T. Quintino, D. Kimpe, H. Deconinck, S. Vandewalle, S. Poedts, Sci.

Program. 14 (2006) 111–139.
[22] A. Lani, N. Villedie, K. Bensassi, L. Koloszar, M. Vymazal, S.M. Yalim, M. Panesi,

21st AIAA Computational Fluid Dynamics Conference, p. 2589.
[23] X.S. Feng, D.K. Zhong, C.Q. Xiang, Y. Zhang, et al., Numerical Modeling of Space

Plasma Flows (Astronum 2012), ASP Conf. Ser, Vol. 474, pp. 131–139.
[24] X.S. Feng, L.P. Yang, C.Q. Xiang, C.W. Jiang, X.P. Ma, S.T. Wu, D.K. Zhong, Y.F.

Zhou, Solar Phys. 279 (2012) 207–229.
[25] X.S. Feng, M. Zhang, Y.F. Zhou, Astrophys. J. Suppl. Ser. 214 (2014) 6, http:

//dx.doi.org/10.1088/0067-0049/214/1/6.
[26] A. Dedner, F. Kemm, D. Kr?ner, C.D. Munz, T. Schnitzer, M.Wesenberg, J. Com-

put. Phys. 175 (2002) 645–673, http://dx.doi.org/10.1006/jcph.2001.6961.
[27] A. Susanto, L. Ivan, H.D. Sterck, C.P.T. Groth, J. Comput. Phys. 250 (2013)

141–164.
[28] T. Tanaka, J. Geophys. Res. 98 (1993) 17251, http://dx.doi.org/10.1029/

93ja01516.
[29] P.L. Roe, J. Comput. Phys. 135 (1997) 250–258.
[30] P. Chandrashekar, Commun. Comput. Phys. 14 (2013) 1252–1286.
[31] D. Derigs, A.R. Winters, G.J. Gassner, S. Walch, J. Comput. Phys. 317 (2016)

223–256.
[32] T. Barth, VKI Computational Fluid Dynamics Volume 2 66 P (SEE N90-27993

22-34), Vol. 2, 1990.
[33] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L.D. Zeeuw, J. Comput. Phys.

154 (1999) 284–309.
[34] M.S. Yalim, D. Vande. Abeele, A. Lani, T. Quintino, H. Deconinck, J. Comput.

Phys. 230 (2011) 6136–6154, http://dx.doi.org/10.1016/j.jcp.2011.04.020.
[35] L. Ivan, H.D. Sterck, S.A. Northrup, C.P.T. Groth, J. Comput. Phys. 255 (2013)

205–227, http://dx.doi.org/10.1016/j.jcp.2013.08.008.
[36] V. Venkatakrishnan, AIAA Paper 93-0880, 1993.
[37] H.V. De. Ven, B.E. Niemanntuitman, A.E.P. Veldman, J. Comput. Appl. Math. 82

(1997) 423–431.
[38] N.M. Maurits, H.V. De. Ven, A.E.P. Veldman, Comput. Methods Appl. Mech.

Engrg. 157 (1998) 133–150.
[39] S.-C. Chang, Y. Wu, V. Yang, X.-Y. Wang, Int. J. Comput. Fluid Dyn. 19 (2005)

359–380.
[40] T. Ogino, R.J. Walker, Geophysical Research Letters 11 (1984) 1018–1021.
[41] T. Tanaka, J. Comput. Phys. 111 (1994) 381–389.
[42] A. Nakamizo, T. Tanaka, Y. Kubo, S. Kamei, H. Shimazu, H. Shinagawa, Journal

of Geophysical Research: Space Physics 114 (2009).
[43] L.P. Yang, X.S. Feng, C.Q. Xiang, Y. Liu, X. Zhao, S.T. Wu, J. Geophys. Res. (Space

Phys.) 117 (2012) A08110.
[44] D. Pahud, V.Merkin, C. Arge,W. Hughes, S. McGregor, J. Atmos. Sol.-Terr. Phys.

83 (2012) 32–38.
[45] E.N. Parker, R.E. Marshak, G.W. Johnson, Phys. Today 17 (1964) 72–72.
[46] S.T. Lepri, S.K. Antiochos, P. Riley, L. Zhao, T.H. Zurbuchen, Astrophys. J. 674

(2008) 1158–1166.

http://omniweb.gsfc.nasa.gov
http://omniweb.gsfc.nasa.gov
http://omniweb.gsfc.nasa.gov
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb1
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb2
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb2
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb2
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb3
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb3
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb3
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb3
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb3
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb4
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb4
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb4
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb5
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb5
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb5
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb6
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb7
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb8
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb8
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb8
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb9
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb10
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb11
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb11
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb11
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb12
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb13
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb13
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb13
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb14
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb14
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb14
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb15
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb16
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb16
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb16
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb17
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb18
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb18
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb18
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb19
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb20
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb20
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb20
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb21
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb21
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb21
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb24
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb24
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb24
http://dx.doi.org/10.1088/0067-0049/214/1/6
http://dx.doi.org/10.1088/0067-0049/214/1/6
http://dx.doi.org/10.1088/0067-0049/214/1/6
http://dx.doi.org/10.1006/jcph.2001.6961
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb27
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb27
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb27
http://dx.doi.org/10.1029/93ja01516
http://dx.doi.org/10.1029/93ja01516
http://dx.doi.org/10.1029/93ja01516
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb29
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb30
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb31
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb31
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb31
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb32
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb32
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb32
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb33
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb33
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb33
http://dx.doi.org/10.1016/j.jcp.2011.04.020
http://dx.doi.org/10.1016/j.jcp.2013.08.008
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb37
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb37
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb37
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb38
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb38
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb38
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb39
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb39
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb39
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb40
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb41
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb42
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb42
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb42
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb43
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb43
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb43
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb44
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb44
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb44
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb45
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb46
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb46
http://refhub.elsevier.com/S0010-4655(18)30419-3/sb46

	A multi-GPU finite volume solver for magnetohydrodynamics-based solar wind simulations
	Introduction
	Grid system and decomposition
	Six-component grid
	Grid decomposition

	Governing equations and numerical methods
	Ideal MHD equations
	Finite volume formulation

	Multi-GPU implementation
	Storage of meshes and state variables
	Primary kernels
	Boundary treatment and communication
	Multiple time stepping

	Numerical Results
	MHD manufactured solution
	Solar wind simulation
	Time measurement
	Comparisons with observations

	Conclusion
	Acknowledgments
	References

