
Journal of Computational Physics 349 (2017) 561–581
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A high-order CESE scheme with a new divergence-free

method for MHD numerical simulation

Yun Yang a,b,∗, Xue-Shang Feng a,∗, Chao-Wei Jiang c,a

a SIGMA Weather Group, State Key Laboratory of Space Weather, NSSC, Beijing, China
b University of Chinese Academy of Sciences, Beijing, China
c Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 April 2017
Received in revised form 6 July 2017
Accepted 9 August 2017
Available online 12 August 2017

Keywords:
High-order CESE
MHD
Magnetic field divergence-free
Least-squares method

In this paper, we give a high-order space–time conservation element and solution element
(CESE) method with a most compact stencil for magneto-hydrodynamics (MHD) equations.
This is the first study to extend the second-order CESE scheme to a high order for MHD
equations. In the CESE method, the conservative variables and their spatial derivatives are
regarded as the independent marching quantities, making the CESE method significantly
different from the finite difference method (FDM) and finite volume method (FVM). To
utilize the characteristics of the CESE method to the maximum extent possible, our
proposed method based on the least-squares method fundamentally keeps the magnetic
field divergence-free. The results of some test examples indicate that this new method is
very efficient.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For magneto-hydrodynamics (MHD) numerical simulations, the conservation element and solution element (CESE)
scheme has some advantages over the finite volume method (FVM) and finite difference method (FDM) [1]. Particularly
for the high-order scheme, the FVM and FDM generally focus on the spatial high order and pay little attention to the
temporal high order [2]. Even if the temporal high order is taken into consideration, the FVM and FDM generally use the
three- or four-step Runge–Kutta method which is difficult to obtain much higher orders for temporal discretization, such as
orders higher than the fifth order. As Balsara et al. [3] reported that, Runge–Kutta time stepping scheme is high cost, for
it need to solve Riemann problem at each stage, and if extended to much higher order, it need additional stages, which
will make it more expensive. The ADER [3,4] time stepping scheme has obvious advantages than the Runge–Kutta scheme
in computation efficiency. But we find the ADER scheme need go through reconstruction, predictor and corrector step, and
it doesn’t have a single and unique formulation. Especially in the construction step (including the Runge–Kutta scheme),
generally need more stencil points for high-order scheme, compared with them, the CESE scheme, is more easily to achieve
high-order in time, it only need Taylor series expansion in time with the same stencil as the second-order CESE scheme. As
[5] pointed that, the DG scheme has some advantages. In fact, the CESE scheme is similar with the DG finite element, the
DG scheme is mainly using finite element to solve the space–time conservation equation while the CESE scheme using a
different method to solve it [6]. Andrew et al. [7] and Lishengtai [8] used the Lax–Wendroff method to obtain a temporal

* Corresponding authors.
E-mail addresses: yangyun@spaceweather.ac.cn (Y. Yang), fengx@spaceweather.ac.cn (X.-S. Feng).
http://dx.doi.org/10.1016/j.jcp.2017.08.019
0021-9991/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2017.08.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:yangyun@spaceweather.ac.cn
mailto:fengx@spaceweather.ac.cn
http://dx.doi.org/10.1016/j.jcp.2017.08.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2017.08.019&domain=pdf

562 Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581
high order using the FVM method. Their fundamental concept is similar to the CESE method, which combines temporal and
spatial discretization to guarantee the simultaneous discretization of any temporal and spatial high order.

The original second-order CESE method was first proposed by Chang et al. [9]. Later, Chang [10] proposed a new any
even-order-accuracy CESE method in which the odd-order derivatives were calculated using the central difference method.
This is similar to solving first-order derivatives in the original second-order scheme, and even-order derivatives can be
obtained by solving the integrated conservation law for the basic high-order derivatives. Bilyeu [11,12] then extended the
CESE method to linear and non-linear equation systems. Liu et al. [13] developed an arbitrary-order accuracy CESE scheme
in which all the order derivatives were obtained by applying a central difference scheme. Later, Shen et al. [14] extended it
to the Euler equation on hybrid grids. Feng et al. [15] applied the original second-order CESE method to the MHD equations.
However, thus far, the commonly used method only has second-order accuracy in multidimensional MHD simulations. In
the present study, we extend the second-order CESE method to high orders for 2D MHD simulations.

It is well known that, to obtain a high-order scheme using the FVM and FDM methods, such as WENO, PPM, TVD and
PNPM scheme, which generally need a larger stencil. This is also the reason why it is difficult to obtain a high-order scheme
in numerical simulation. In the present study, we use a compact stencil as in the second-order CESE method to obtain an
arbitrary-order accuracy scheme based on the arbitrary-order Taylor expansions in solution elements (SEs).

In contrast to hydrodynamics (HD), for MHD, keeping the magnetic field divergence-free is a great challenge; failure
to do so will lead to unphysical forces and numerical instability [16–18]. Some methods have been proposed to keep the
magnetic field divergence-free, such as the eight-wave formulation approach [19], the projection method [20], the diffusive
method [21], the constrained transport (CT) method [22], the generalized Lagrange multiplier (GLM) method [23] and some
others such as the reference [24–27]. In the present study, we take full advantage of the merits of the CESE method and
apply the concept of the least-squares method for solving the first-order derivatives, as presented in section 4 in detail.

The remainder of this paper is organized as follows. The MHD governing equations are presented in section 2. Section 3
presents the construction of the high-order CESE method and takes the fourth-order scheme as an example in detail. In
section 4, the new method for keeping the magnetic field divergence-free is introduced. Some standard benchmarks are
used in the section 5 to check the effectiveness of our new method. Section 6 presents the conclusions.

2. MHD governing equations

In order to exclude the impact of some viscous terms on the accuracy of the high-order scheme, we eliminate the viscous
fluxes and source terms and use the ideal MHD equations.

The ideal MHD equations in conservative form in the Cartesian coordinate system are as follows:

∂U

∂t
+ ∇ · F = 0, (1)

where U = (um) = (ρ, ρvx, ρv y, ρvz, E, Bx, B y, Bz)
T, (m = 1, · · · , 8) is the state vector of the conservative variables. F de-

notes the flux vector, which equals F, (F, G), and (F, G, H) for 1, 2, and 3 dimensions, respectively.

F = (fm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvx

ρv2
x + p0 − B2

x
ρvx v y − Bx B y

ρvx vz − Bx Bz

(E + p)vx − Bx(vx Bx + v y B y + vz Bz)

0
vx B y − v y Bx

vx Bz − vz Bx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

G = (gm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρv y

ρv y vx − B y Bx

ρv2
y + p0 − B2

y
ρv y vz − B y Bz

(E + p)v y − B y(vx Bx + v y B y + vz Bz)

v y Bx − vx B y

0
v B − v B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)
y z z y

Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581 563
Fig. 1. Projection of the mesh points in E2+1 onto the x–y plane.

H = (hm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvz

ρvz vx − Bz Bx

ρvz v y − Bz B y

ρv2
z + p0 − B2

z
(E + p)vz − Bz(vx Bx + v y B y + vz Bz)

vz Bx − vx Bz

vz B y − v y Bz

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where t, γ , ρ, E, V = (vx, v y, vz), and B = (Bx, B y, Bz) denote time, the ratio of specific heats, the mass density, total
energy, plasma velocity, and magnetic field, respectively. p = (γ − 1)(E − 1

2 V · V − 1
2 B · B) is the gas pressure and p0 =

p + B2/2 is the total pressure.

3. Construction of the high-order CESE scheme

Below, we derive all the formulas in the 2D case, which can be directly extended to the 3D case. Here, we discuss the
construction of the fourth-order CESE scheme in detail. The basic concept of the second-order CESE scheme is detailed in
Ref. [1,9,14,15], and [28–31].

In the generalized 3D Euclidean space E2+1(x, y, t), which combines the spatial coordinates with the time t , Eq. (1) can
be rewritten as

∇ · hm = 0, (5)

where hm = (fm, gm, um), (m = 1, · · · , 8) is the space–time flux vector.
By applying Gauss’s divergence theorem into Eq. (5) in the 3D space–time domain E2+1(x, y, t), we obtain∮

S(V)

hm · ds = 0, (6)

where S(V) is the boundary of any closed space–time region V in E2+1(x, y, t) · ds = (dδ)n, dδ is the area (volume in the
3D case) and n is the unit outward normal vector of a surface element on S(V) · hm · ds denotes the total space–time flux
leaving the surface element ds.

As Fig. 1 shows, the space–time domain is discretized by a uniform mesh in Cartesian coordinates. Vi denotes the i-th
vertex point, and Ai denotes the i-th mid-point of the element edge. As reported in Ref. [12], for quadrilateral cells, each
cell is associated with four basic conservation elements (BCEs), which constitute a compound CE (CCE). In Fig. 1, V1V5V7V9
is the projection of one CCE, and the projections of four BCEs related to it are (V1V2V3V4), (V3V4V5V6), (V6V7V8V3), and
(V8V3V2V9). Ci is the centroid of the i-th BCE. G is the centroid of CCE. Ci and G are also the solution points of the BCEs
and CCE, respectively.

Because the meshes are uniform, the centroids coincide with the center of quadrilaterals. The final solution point G
coincides with the vertex point V3.

There are mainly two kinds of CESE schemes: non-staggered and staggered [14]. In this study, we use the latter. In a
full time step, during the first half time step, the solution is updated from the vertexes marked by dots to the cell center

564 Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581
Fig. 2. Definition of CE and SE of point C1.

marked by hollow circles in Fig. 1. During the second half time step, the solution is updated from the cell center to the
vertexes.

Specifically, for a cell point, we first update the solution of its four BCEs, namely Ci , during the first half time step.
Following which the values of Ci are used to update the solution of the CCE, namely G, during the second half time step.

For each set of solution points Ci and G, we define a conservation element (CE) and a relevant solution element (SE).
Below, we take the point C′

1 as an example. As Fig. 2 shows, CE(C′
1) is the polygon V1V2V3V4V′

1V′
2V′

3V′
4, and its corresponding

SE(C′
1) is the union of three planes, V′

1V′
2V′

3V′
4, A1A3A′′

1A′′
3, and A2A4A′′

2A′′
4, which are orthogonal to each other and intersect

at C′
1. Ai , Vi , and Ci represent the original solution points at the time level n − 1/2; A′

i , V′
i , and C′

i at the time level n; A′′
i ,

V′′
i , and C′′

i at time level n + 1/2, where n is the index for time.
When constructing the CEs, we should guarantee that all the CEs cover the entire space–time domain and that their SEs

cover the boundaries of all the CEs but never overlap with each other.
Because the conservation law, i.e., Eq. (6), is suitable for an arbitrary closed space–time domain, the CE we constructed in

Fig. 2 will facilitate the derivation of the discrete form of Eq. (6). All the boundaries of the CEs are parallel to the coordinate
surfaces, and the normal direction is along the coordinate axis; therefore, on any boundary surface of CEs, there is only one
component of the total space–time flux, which makes the integration of space–time fluxes much more convenient, especially
for the high-order scheme.

Then, we impose the conservation law, i.e., Eq. (6), on the CE of one point. In each SE, the space–time flux is ap-
proximated by Taylor expansion, and the order of Taylor expansion determines the order of the scheme; for example, the
first-order Taylor expansion is for second-order scheme. The fourth-order scheme requires the third-order Taylor expansion,
and irrespective of the order number, the CEs, SEs, and stencils are always the same as in the second-order scheme, which
is one advantage of this type of high-order CESE scheme. Below, we still consider the point C1 as an example.

By imposing Eq. (6) on the conservation element of C1, we obtain
∮

S(CE(C1))

hm · ds =
∮

S(V1V2V3V4V′
1V′

2V′
3V′

4)

hm · ds = 0. (7)

In a half time step, the integration
∮

S(V1V2V3V4V′
1V′

2V′
3V′

4)
hm · ds in Eq. (7) includes three parts: 1) integrating over the

bottom surface V1V2V3V4;
2) integrating over the side surfaces V1V′

1V′
2V2, V2V′

2V′
3V3, V3V′

3V′
4V4, and V4V′

4V′
1V1;

3) integrating over the top surface V′
1V′

2V′
3V′

4.
Below, we present the integration of space–time fluxes over each boundary surface of CEs. All the notations used below

such as umxy, fmxt , m denotes m-th component of eight conservative variables or flux. x, y, t denote their partial derivatives
with respect to space or time.

1) Integration over the bottom surface of CEs
Only the space–time flux U passes through the bottom surface. The bottom surface integration will be split into four

parts. On each part, um is approximated by the third-order Taylor expansion at the points V1, V2, V3, V4. In Fig. 2, on the
part V1A2C1A1, um is approximated by the third-order Taylor expansion at the point V1

i�x∫

(i− 1
2)�x

j�y∫

(j− 1
2)�y

{
(um)V1 + (umx)V1

[
x −

(
i − 1

2

)
�x

]
+ (umy)V1

[
y −

(
j − 1

2

)
�y

]

+ 1

2
(umxx)V1

[
x −

(
i − 1

2

)
�x

]2

+ 1

2
(umyy)V1

[
y −

(
j − 1

2

)
�y

]2

+ 1 [
(umxy)V1 + (umyx)V1

][
x −

(
i − 1

)
�x

][
y −

(
j − 1

)
�y

]

2 2 2

Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581 565
+ 1

6
(umxxx)V1

[
x −

(
i − 1

2

)
�x

]3

+ 1

6
(umyyy)V1

[
y −

(
j − 1

2

)
�y

]3

+ 1

6

[
(umyyx)V1 + (umyxy)V1 + (umxyy)V1

][
y −

(
j − 1

2

)
�y

]2[
x −

(
i − 1

2

)
�x

]

+ 1

6

[
(umxxy)V1 + (umxyx)V1 + (umyxx)V1

][
x −

(
i − 1

2

)
�x

]2[
y −

(
j − 1

2

)
�y

]}
dxdy

= �x�y

4

{
(um)V1 + (umx)V1

�x

4
+ (umy)V1

�y

4
+ (umxx)V1

�x2

24
+ (umyy)V1

�y2

24

+ [(umxy)V1 + (umyx)V1

]�x�y

32
+ (umxxx)V1

�x3

192
+ (umyyy)V1

�y3

192

+ [(umyyx)V1 + (umyxy)V1 + (umxyy)V1

]�y2�x

288

+ [(umxxy)V1 + (umxyx)V1 + (umyxx)V1

]�x2�y

288

}
.

On the part V2A2C1A3, um is approximated by the third-order Taylor expansion at the point V2

(i+ 1
2)�x∫

i�x

j�y∫

(j− 1
2)�y

{
(um)V2 + (umx)V2

[
x −

(
i + 1

2

)
�x

]
+ (umy)V2

[
y −

(
j − 1

2

)
�y

]

+ 1

2
(umxx)V2

[
x −

(
i + 1

2

)
�x

]2

+ 1

2
(umyy)V2

[
y −

(
j − 1

2

)
�y

]2

+ 1

2

[
(umxy)V2 + (umyx)V2

][
x −

(
i + 1

2

)
�x

][
y −

(
j − 1

2

)
�y

]

+ 1

6
(umxxx)V2

[
x −

(
i + 1

2

)
�x

]3

+ 1

6
(umyyy)V2

[
y −

(
j − 1

2

)
�y

]3

+ 1

6

[
(umyyx)V2 + (umyxy)V 2 + (umxyy)V2

][
x −

(
i + 1

2

)
�x

][
y −

(
j − 1

2

)
�y

]2

+ 1

6

[
(umxxy)V2 + (umxyx)V2 + (umyxx)V2

][
x −

(
i + 1

2

)
�x

]2[
y −

(
j − 1

2

)
�y

]}
dxdy

= �x�y

4

{
(um)V2 − (umx)V2

�x

4
+ (umy)V2

�y

4
+ (umxx)V2

�x2

24
+ (umyy)V2

�y2

24

− [(umxy)V2 + (umyx)V2

]�x�y

32
− (umxxx)V2

�x3

192
+ (umyyy)V2

�y3

192

− [(umyyx)V2 + (umyxy)V2 + (umxyy)V2

]�y2�x

288

+ [(umxxy)V2 + (umxyx)V2 + (umyxx)V2

]�x2�y

288

}
.

On the part V3A3C1A4,

(i+ 1
2)�x∫

i�x

(j+ 1
2)�y∫

j�y

{
(um)V3 + (umx)V3

[
x −

(
i + 1

2

)
�x

]
+ (umy)V3

[
y −

(
j + 1

2

)
�y

]

+ 1
(umxx)V3

[
x −

(
i + 1

)
�x

]2

+ 1
(umyy)V3

[
y −

(
j + 1

)
�y

]2
2 2 2 2

566 Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581
+ 1

2

[
(umxy)V3 + (umyx)V3

][
x −

(
i + 1

2

)
�x

][
y −

(
j + 1

2

)
�y

]

+ 1

6
(umxxx)V3

[
x −

(
i + 1

2

)
�x

]3

+ 1

6
(umyyy)V3

[
y −

(
j + 1

2

)
�y

]3

+ 1

6

[
(umyyx)V3 + (umyxy)V3 + (umxyy)V3

][
x −

(
i + 1

2

)
�x

][
y −

(
j + 1

2

)
�y

]2

+ 1

6

[
(umxxy)V3 + (umxyx)V3 + (umyxx)V3

][
x −

(
i + 1

2

)
�x

]2[
y −

(
j + 1

2

)
�y

]}
dxdy

= �x�y

4

{
(um)V3 − (umx)V3

�x

4
− (umy)V3

�y

4
+ (umxx)V3

1

24
�x2 + (umyy)V3

1

24
�y2

+ [(umxy)V3 + (umyx)V3

]�x�y

32
− (umxxx)V3

�x3

192
− (umyyy)V3

�y3

192

− [(umyyx)V3 + (umyxy)V3 + (umxyy)V3

]�y2�x

288

− [(umxxy)V3 + (umxyx)V3 + (umyxx)V3

]�x2�y

288

}
.

On the part V4A1C1A4,

i�x∫

(i− 1
2)�x

(j+ 1
2)�y∫

j�y

{
(um)V4 + (umx)V4

[
x −

(
i − 1

2

)
�x

]
+ (umy)V4

[
y −

(
j + 1

2

)
�y

]

+ 1

2
(umxx)V4

[
x −

(
i − 1

2

)
�x

]2

+ 1

2
(umyy)V4

[
y −

(
j + 1

2

)
�y

]2

+ 1

2

[
(umxy)V4 + (umyx)V4

][
x −

(
i − 1

2

)
�x

][
y −

(
j + 1

2

)
�y

]

+ 1

6
(umxxx)V4

[
x −

(
i − 1

2

)
�x

]3

+ 1

6
(umyyy)V4

[
y −

(
j + 1

2

)
�y

]3

+ 1

6

[
(umyyx)V4 + (umyxy)V4 + (umxyy)V4

][
x −

(
i − 1

2

)
�x

][
y −

(
j + 1

2

)
�y

]2

+ 1

6

[
(umxxy)V4 + (umxyx)V4 + (umyxx)V4

][
x −

(
i − 1

2

)
�x

]2[
y −

(
j + 1

2

)
�y

]}
dxdy

= �x�y

4

{
(um)V4 + (umx)V4

�x

4
− (umy)V4

�y

4
+ (umxx)V4

�x2

24
+ (umyy)V4

�y2

24

− [(umxy)V4 + (umyx)V4

]�x�y

32
+ (umxxx)V4

�x3

192
− (umyyy)V4

�y3

192

+ [(umyyx)V4 + (umyxy)V4 + (umxyy)V4

]�y2�x

288

− [(umxxy)V4 + (umxyx)V4 + (umyxx)V4

]�x2�y

288

}
.

2) Integration over the side surfaces of CEs
Only the space–time flux G passes through the two side surfaces in the direction of the x axis, V1V′

1V′
2V2 and V3V′

3V′
4V4.

Only the space–time flux F passes through the two side surfaces in the direction of the y axis, V1V′
1V′

4V4 and V2V′
2V′

3V3.
Each side surface is split into two parts. On each part, the fluxes are approximated by the third-order Taylor expansion

at the near solution point. For example, the surface V1V′
1V′

4V4 is split into V1V′
1A′

1A1 and A1A′
1V′

4V4. On V1V′
1A′

1A1, fm is
approximated at V1; on A1A′

1V′
4V4, fm is approximated at V4.

On the surface V1V′
1V′

4V4, x = (i − 1
2)�x is a constant; therefore, all the integration terms containing �x are zero.

The integration on the surface V1V′ A′ A1 is as follows:
1 1

Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581 567
j�y∫

(j− 1
2)�y

k�t∫

(k− 1
2)�t

{
(fm)V1 + (fmy)V1

[
y −

(
j − 1

2

)
�y

]
+ (fmt)V1

[
t −

(
k − 1

2

)
�t

]

+ 1

2
(fmyy)V1

[
y −

(
j − 1

2

)
�y

]2

+ 1

2
(fmtt)V1

[
t −

(
k − 1

2

)
�t

]2

+ (fmyt)V1

[
y −

(
j − 1

2

)
�y

][
t −

(
k − 1

2

)
�t

]

+ 1

6
(fmyyy)V1

[
y −

(
j − 1

2

)
�y

]3

+ 1

6
(fmttt)V1

[
t −

(
k − 1

2

)
�t

]3

+ 1

2
(fmyyt)V1

[
y −

(
j − 1

2

)
�y

]2[
t −

(
k − 1

2

)
�t

]

+ 1

2
(fmytt)V1

[
y −

(
j − 1

2

)
�y

][
t −

(
k − 1

2

)
�t

]2}
dydt

= �y�t

4

{
(fm)V1 + (fmy)V1

�y

4
+ (fmt)V1

�t

4
+ (fmyy)V1

�y2

24
+ (fmtt)V1

�t2

24

+ (fmyt)V1

�y�t

16
+ (fmyyy)V1

�y3

192
+ (fmttt)V1

�t3

192

+ (fmyyt)V1

�y2�t

96
+ (fmytt)V1

�y�t2

96

}
.

On the surface A1A′
1V′

4V4,

(j+ 1
2)�y∫

j�y

k�t∫

(k− 1
2)�t

{
(fm)V4 + (fmy)V4

[
y −

(
j + 1

2

)
�y

]
+ (fmt)V4

[
t −

(
k − 1

2

)
�t

]

+ 1

2
(fmyy)V4

[
y −

(
j + 1

2

)
�y

]2

+ 1

2
(fmtt)V4

[
t −

(
k − 1

2

)
�t

]2

+ (fmyt)V4

[
y −

(
j + 1

2

)
�y

][
t −

(
k − 1

2

)
�t

]

+ 1

6
(fmyyy)V4

[
y −

(
j + 1

2

)
�y

]3

+ 1

6
(fmttt)V4

[
t −

(
k − 1

2

)
�t

]3

+ 1

2
(fmyyt)V4

[
y −

(
j + 1

2

)
�y

]2[
t −

(
k − 1

2

)
�t

]

+ 1

2
(fmytt)V4

[
y −

(
j + 1

2

)
�y

][
t −

(
k − 1

2

)
�t

]2}
dydt

= �y�t

4

{
(fm)V4 − (fmy)V4

�y

4
+ (fmt)V4

�t

4
+ (fmyy)V4

�y2

24
+ (fmtt)V4

�t2

24

− (fmyt)V4

�y�t

16
− (fmyyy)V4

�y3

192
+ (fmttt)V4

�t3

192

+ (fmyyt)V4

�y2�t

96
− (fmytt)V4

�y�t2

96

}
.

On the surface V2V′
2V′

3V3, x = (i + 1
2)�x is also a constant. Therefore, the integration on the surfaces V2V′

2A′
3A3 and

A3A′
3V′

3V3 is similar to that on V1V′
1A′

1A1 and A1A′
1V′

4V4, except that the outward normal direction is opposite; the fluxes
are approximated at points V2 and V3, respectively.

On the two surfaces in the direction of the x axis, V1V′
1V′

2V2 and V3V′
3V′

4V4, y = (j − 1
2)�y and y = (j + 1

2)�y are
constants; therefore, on these two surfaces, all the integration terms containing �y are zero. The final integration form is
similar to those on the surface in the direction of y axis, with fm replaced by gm and y by x.

568 Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581
3) Integration over the top surface of CEs
Only the space–time flux U passes through the top surface, but it is different from the bottom surface in that the flux is

approximated at the solution point C′
1 on the entire top surface.

(i+ 1
2)�x∫

(i− 1
2)�x

(j+ 1
2)�y∫

(j− 1
2)�y

{
(um)C′

1
+ (umx)C′

1
[x − i�x] + (umy)C′

1
[y − j�y]

+ 1

2
(umxx)C′

1
[x − i�x]2 + 1

2
(umyy)C′

1
[y − j�y]2

+ 1

2

[
(umxy)C′

1
+ (umyx)C′

1

][x − i�x][y − j�y]

+ 1

6
(umxxx)C′

1
[x − i�x]3 + 1

6
(umyyy)C′

1
[y − j�y]3

+ 1

6

[
(umyyx)C′

1
+ (umyxy)C′

1
+ (umxyy)C′

1

][x − i�x][y − j�y]2

+ 1

6

[
(umyxx)C′

1
+ (umxyx)C′

1
+ (umxxy)C′

1

][x − i�x]2[y − j�y]
}

dxdy

= �x�y

{
(um)C′

1
+ (umxx)C′

1

�x2

24
+ (umyy)C′

1

�y2

24

}
.

After the integration over all the boundary surfaces of CEs, we obtain the updated variables Uupdated as follows:

Uupdated =
(∑

Ibottom −
∑

Iside −
∑

I∗top

)
/Area_top_surface, (8)

where Ibottom and Iside are the space–time flux integration on the bottom and side surface of CEs, respectively. I∗top is the
high-order part of flux integration on the top surface.

The form of Eq. (8) for the fourth-order scheme is as follows:

(um)n
i, j = 1

�x�y

4∑
l=1

〈
�x�y

4

{
(um)

n−1/2
l + (umx)

n−1/2
l

(
kx

�x

4

)
+ (umy)

n−1/2
l

(
ky

�y

4

)

+ 1

24

[
(umxx)

n−1/2
l (kx�x)2 + (umyy)

n−1/2
l (ky�y)2]

+ 1

32

[
(umxy)

n−1/2
l + (umyx)

n−1/2
l

]
(kx�x)(ky�y)

+ 1

192

[
(umxxx)

n−1/2
l (kx�x)3 + (umyyy)

n−1/2
l (ky�y)3]

+ (kx�x)2(ky�y)

288

[
(umxxy)

n−1/2
l + (umxyx)

n−1/2
l + (umyxx)

n−1/2
l

]

+ (ky�y)2(kx�x)

288

[
(umyyx)

n−1/2
l + (umyxy)

n−1/2
l + (umxyy)

n−1/2
l

]}

+ kx
�y�t

4

{
(fm)

n−1/2
l + (fmy)

n−1/2
l

(
ky

�y

4

)
+ (fmt)

n−1/2
l

(
�t

4

)

+ 1

24

[
(fmtt)

n−1/2
l (�t)2 + (fmyy)

n−1/2
l (ky�y)2]

+ 1

16
(fmyt)

n−1/2
l (ky�y)�t

+ 1

192

[
(fmyyy)

n−1/2
l (ky�y)3 + (fmttt)

n−1/2
l (�t)3]

+ 1

96

[
(fmyyt)

n−1/2
l (ky�y)2�t + (fmytt)

n−1/2
l (ky�y)(�t)2]}

+ ky
�x�t

{
(gm)

n−1/2
l + (gmx)

n−1/2
l

(
kx

�x
)

+ (gmt)
n−1/2
l

(
�t
)

4 4 4

Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581 569
+ 1

24

[
(gmtt)

n−1/2
l (�t)2 + (gmxx)

n−1/2
l (kx�x)2]

+ 1

16
(gmxt)

n−1/2
l (kx�x)�t

+ 1

192

[
(gmxxx)

n−1/2
l (kx�x)3 + (gmttt)

n−1/2
l (�t)3]

+ 1

96

[
(gmxxt)

n−1/2
l (kx�x)2�t + (gmxtt)

n−1/2
l (kx�x)(�t)2]}〉

− 1

24

[
(umxx)

n
C1

(�x)2 + (umyy)
n
C1

(�y)2]. (9)

In the above equation, m = 1, 2, · · · , 8 represent eight equations, and l = 1, 2, 3, 4 represent four solution points
V1, V2, V3, V4, respectively. kx, ky is −1 or 1, as determined by the position of the four solution points V1, V2, V3, V4 relative
to the center point C1.

The derivatives of flux F and G with respect to x, y, and t can be obtained according to the chain rule.

∂Tm

∂φ1
=

8∑
p=1

∂Tm

∂up

∂up

∂φ1
, (10)

where Tm represents fm or gm and φ1 = {x, y, t}.
By using the chain rule for Eq. (10), we can obtain the second-order derivatives as follows:

∂2Tm

∂φ1∂φ2
=

8∑
p=1

∂Tm

∂up

∂2up

∂φ1∂φ2
+

8∑
p=1

8∑
q=1

∂2Tm

∂up∂uq

∂up

∂φ1

∂uq

∂φ2
, (11)

where (φ1, φ2) = {(x, x), (y, y), (t, t), (x, y), (y, x), (x, t), (y, t)}.
Similarly, by using the chain rule for Eq. (11), we can obtain the third-order derivatives as follows:

∂3Tm

∂φ1∂φ2∂φ3
=

8∑
p=1

∂Tm

∂up

∂3up

∂φ1∂φ2∂φ3

+
8∑

p=1

8∑
q=1

∂2Tm

∂up∂uq

(
∂2up

∂φ1∂φ2

∂uq

∂φ3
+ ∂2up

∂φ1∂φ3

∂uq

∂φ2
+ ∂2up

∂φ2∂φ3

∂uq

∂φ1

)

+
8∑

p=1

8∑
q=1

8∑
r=1

∂3Tm

∂up∂uq∂ur

∂up

∂φ1

∂uq

∂φ2

∂ur

∂φ3
, (12)

where

(φ1, φ2, φ3) = {(x, x, x), (x, x, y), (x, y, x), (x, y, y), (y, x, x),

(y, x, y), (y, y, x), (y, y, y), (x, x, t), (x, y, t),

(y, x, t), (y, y, t), (x, t, t), (y, t, t), (t, t, t)
}
.

In the same way, we can get much higher-order derivatives.
Bilyeu [12] reported that, at some points, the alternate rule of differentiation does not hold. Therefore, here we regard

∂2u
∂x∂ y and ∂2u

∂ y∂x as different variables.

In Eq. (10), Eq. (11), and Eq. (12), we first need to obtain the Jacobian matrices ∂Tm
∂up

, ∂2 Tm
∂up∂uq

, ∂3 Tm
∂up∂uq∂ur

, where Tm =
fm or gm . The Jacobian matrices can be obtained by directly taking the derivative of flux with respect to every conservative
variable in sequence, but for MHD equations, this process is cumbersome (we have attempted this method), especially when
adding the second- and third-order Jacobian matrices. We used the symbolic math of Matlab to obtain the Jacobian matrices.

In the actual application, for the derivation with respect to time t , we should note the solving sequence. Solving in the
following sequence will be economic and effective.

After obtaining fmx and gmy , according to the conservation law expressed by Eq. (1), we can obtain umt as

umt = − fmx − gmy. (13)

By taking the derivative of Eq. (13) with respect to x or y, we obtain

570 Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581
umxt = − fmxx − gmyx, (14)

umyt = − fmxy − gmyy. (15)

Then, according to Eq. (10) and Eq. (11), we obtain fmt, gmt, fmxt, gmxt, fmyt, gmyt .
By taking the derivative of Eq. (13) with respect to t , we obtain

umtt = − fmxt − gmyt. (16)

Then, by taking the derivative of Eq. (16) with respect to x or y, we obtain

umxtt = − fmxxt − gmyxt, (17)

umytt = − fmxyt − gmyyt. (18)

According to Eq. (11) and Eq. (12), we obtain fmtt, gmtt, fmxtt, gmxtt, fmytt, gmytt .
Then, by taking the derivative of Eq. (16) with respect to t , we obtain

umttt = − fmxtt − gmytt. (19)

Finally, according to Eq. (12) we obtain fmttt, gmttt .
From Eq. (13)–Eq. (19), we can find that all the derivatives with respect to t of conservative variables can be obtained

through the derivatives of flux fm and gm . Moreover, the derivatives of flux fm and gm can be obtained from the derivatives
of conservative variables with respect to x or y. Therefore, at the end, to update the conservative variables of Eq. (9), we only
need to obtain the derivatives of conservative variables with respect to x or y for all orders. For example, for the fourth-order
scheme, we need to update the values of umx, umy, umxx, umxy, umyx, umyy, umxxx, umxxy, umxyx, umxyy, umyxx, umyxy, umyyx, umyyy .

As with the original second-order scheme, to obtain the first-order derivatives of conservative variables, we need to
update Eq. (9) to obtain the new values of conservative variables at the center. Now, for the fourth-order scheme, to update
Eq. (9), we also need the new second-order derivatives of conservative variables at the center of the top face. To obtain the
new second-order derivatives, we need the new third-order derivative. Therefore, the sequence to update the conservative
variables in a complete half time step is as follows:

1: updating the third-order derivatives;
2: updating the second-order derivatives;
3: updating the conservative variables at the center;
4: updating the first-order derivatives.
Below, we describe the method to update the derivatives in the above sequence, which we mainly refer the thoughts of

Shen et al. [14]. Some details we will describe more clearly according to our program debugging process. Here, we take the
first half time step as an example.

3.1. Time-marching for the third-order derivatives of conservative variables

At the first half time step, we update the values at Ci(i = 1, · · ·, 4). Below, we take C1 as an example.
As in Fig. 2, at each of the points V1, V2, V3, V4 and its two neighbor points, by using the first-order Taylor expansion to

approximate the second-order derivatives, we can obtain the third-order derivatives. Take points V1 and umxx as an example.
umxx at the two neighbor points V2 and V4 of V1 can be approximated by the first-order Taylor expansion from point V1

as follows:

umxx
(
V′

2

)= umxx
(
V′

1

)+ umxxx
(
V′

1

)
�xV2V1 + umxxy

(
V′

1

)
�yV2V1 ,

umxx
(
V′

4

)= umxx
(
V′

1

)+ umxxx
(
V′

1

)
�xV4V1 + umxxy

(
V′

1

)
�yV4V1 ,

(20)

where �xV2V1 = xV2 − xV1 , �yV2V1 = yV2 − yV1 , �xV4V1 = xV4 − xV1 , �yV4V1 = yV4 − yV1 .
umxx(V′

2) and umxx(V′
4) are the values at the new time step, and they can be evaluated using the values at the preceding

half time level:

umxx
(
V′

2

)= umxx(V2) + umxxt(V2)
�t

2
,

umxx
(
V′

4

)= umxx(V4) + umxxt(V4)
�t

2
.

(21)

By substituting Eq. (21) into Eq. (20) and then using Cramer’s rule, we can obtain umxxx(V′
1) and umxxy(V′

1). For a fourth-
order scheme, all the third-order derivatives are constants in every SE. Therefore,

umxxx
(
C′

1

)= umxxx
(
V′

1

)
, umxxy

(
C′

1

)= umxxy
(
V′

1

)
. (22)

This way, we have obtained one group of umxxx(C′
1) and umxxy(C′

1).
Similarly, we can obtained another three groups of umxxx(C′

1) and umxxy(C′
1) from points V2, V3, V4. Then, by directly

using the arithmetic average or by using a weighted average function for a problem with discontinuities, the final values
of umxxx(C′

1) and umxxy(C′
1) can be obtained. With the same strategy, by using umxy , umyx , and umyy , we can obtain the

corresponding third-order derivatives (umxyx, umxyy), (umyxx, umyxy), and (umyyx, umyyy).

Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581 571
3.2. Time-marching for the second-order derivatives of conservative variables

By using the second-order Taylor expansion to approximate the first-order derivatives, we can obtain the second-order
derivatives.

Below we take point V1 and umx as an example.

umx
(
V′

2

)= umx
(
V′

1

)+ umxx
(
V′

1

)
�xV2V1 + umxy

(
V′

1

)
�yV2V1 + 1

2

[
umxxx

(
V′

1

)
(�xV2V1)

2

+ umxxy
(
V′

1

)
�xV2V1�yV2V1 + umxyx

(
V′

1

)
�xV2V1�yV2V1 + umxyy

(
V′

1

)
(�yV2V1)

2].
(23)

umx
(
V′

4

)= umx
(
V′

1

)+ umxx
(
V′

1

)
�xV4V1 + umxy

(
V′

1

)
�yV4V1 + 1

2

[
umxxx

(
V′

1

)
(�xV4V1)

2

+ umxxy
(
V′

1

)
�xV4V1�yV4V1 + umxyx

(
V′

1

)
�xV4V1�yV4V1 + umxyy

(
V′

1

)
(�yV4V1)

2].
(24)

In Eq. (23) and Eq. (24), the third-order derivatives were obtained in advance from section 3.1, and the first-order deriva-
tives can be calculated from the preceding half time level; note that the Taylor expansion should include the second-order
derivatives with respect to t . For example,

umx
(
V′

2

)= umx(V2) + umxt(V2)
�t

2
+ 1

2
umxtt(V2)

(
�t

2

)2

.

By using Cramer’s rule, we can obtain umxx(V′
1) and umxy(V′

1).
In contrast to the third-order derivatives, the second-order derivatives are not constants in every SE. Therefore, we must

additionally use the first-order Taylor expansion to obtain the second-order derivatives at the center solution point. For
example,

umxx
(
C′

1

)= umxx
(
V′

1

)+ umxxx
(
V′

1

)
�xC1V1 + umxxy

(
V′

1

)
�yC1V1 ,

umxy
(
C′

1

)= umxy
(
V′

1

)+ umxyx
(
V′

1

)
�xC1V1 + umxyy

(
V′

1

)
�yC1V1 ,

(25)

where �xC1V1 = xC1 − xV1 , �yC1V1 = yC1 − yV1 .
Subsequently, treating like this at the points V2, V3, V4, we can obtain four groups of umxx(C′

1) and umxy(C′
1), following

which we finally obtain the new umxx(C′
1) and umxy(C′

1) by using the weighted average method.
By treating umy with the same strategy, we can obtain the new umyx(C′

1) and umyy(C′
1).

After obtaining the third- and second-order derivatives, we can use Eq. (9) to obtain the new conservative variables
um(C′

1).

3.3. Time-marching for the first-order derivatives of conservative variables

In contrast to the second- and third-order derivatives, the first-order derivatives are obtained from the values of con-
servative variables at points V1, V2, V3, V4 approximated by the third-order Taylor expansion from the center point C1. For
example,

um
(
V′

k

)= um
(
C′

1

)+ umx
(
C′

1

)
�xkC1 + umy

(
C′

1

)
�ykC1

+ 1

2

[
umxx

(
C′

1

)
(�xkC1)

2 + umyy
(
C′

1

)
(�ykC1)

2

+ umxy
(
C′

1

)
�xkC1�ykC1 + umyx

(
C′

1

)
�xkC1�ykC1

]

+ 1

6

[
umxxx

(
C′

1

)
(�xkC1)

3 + umxxy
(
C′

1

)
(�xkC1)

2�ykC1

+ umxyx
(
C′

1

)
(�xkC1)

2�ykC1 + umxyy
(
C′

1

)
(�ykC1)

2�xkC1

+ umyxx
(
C′

1

)
(�xkC1)

2�ykC1 + umyxy
(
C′

1

)
(�ykC1)

2�xkC1

+ umyyx
(
C′

1

)
(�ykC1)

2�xkC1 + umyyy
(
C′

1

)
(�ykC1)

3], (26)

where �xkC1 = xVk − xC1 , �ykC1 = yVk − yC1 , k = 1, 2, 3, 4.
In Eq. (26), the conservative variable um(C′

1) as well as its second- and third-order derivatives have all been calculated
in advance, and um(V′

k) can be evaluated from the preceding half time level. For example,

um
(
V′

k

)= um(Vk) + umt(Vk)
�t + 1

umtt(Vk)

(
�t
)2

+ 1
umttt(Vk)

(
�t
)3

.

2 2 2 6 2

572 Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581
The conservative variable is then split into four groups according to (V1, V2), (V2, V3), (V3, V4), (V4, V1). By using Cramer’s
rule, we can get four groups of umx(C′

1) and umy(C′
1). Then, the weighted average is used to obtain the final umx(C′

1) and
umy(C′

1).
As shown in Ref. [10] and [11], the weighted average function is defined as follows:

umx
(
C′

1

)=
{

0 if θmk = 0∑4
k=1[(W (k)

m)αu(k)
mx(C′

1)]/(
∑4

k=1(W (k)
m)α + ε) otherwise

,

umy
(
C′

1

)=
{

0 if θmk = 0∑4
k=1[(W (k)

m)αu(k)
my(C′

1)]/(
∑4

k=1(W (k)
m)α + ε) otherwise

,

where

θmk =
√[

umx
(
C′

1

)]2 + [umy
(
C′

1

)]2
, W (k)

m =
4∏

j=1, j �=k

θmk, m = 1,2, · · · ,8,k = 1,2,3,4.

α ≥ 0 is an adjustable parameter that can control the viscosity of the scheme, and it is usually α = 0, 1, 2. α = 1 or 2 can
reduce numerical oscillation in a strong discontinuity domain. ε is an infinitesimal. We use α = 2 and ε = 10−30.

In a similar manner, we can update the values of um and its derivatives at points C′
2, C

′
3, C

′
4. Then in the second half time

step, by using the values at points C′
1, C

′
2, C

′
3, C

′
4, the values at the final solution point G′′ can be obtained.

4. New method for keeping the magnetic field divergence-free

In the process of obtaining a group of first-order derivatives in section 3.3, the number of equations is greater than
the number of unknowns. This overdetermined equations inspires the use of the least-squares method to obtain the final
solutions.

The magnetic field divergence-free condition is as follows:

∇ · B = ∂ Bx

∂x
+ ∂ B y

∂ y
= u6x + u7y = 0. (27)

When using the least-squares method to solve the first-order derivatives relative to Bx, B y , Eq. (27) can be combined
with other equations relative to Bx and B y to obtain a new overdetermined equations. Thus, by using the least-squares
method, the magnetic field divergence can be fundamentally controlled.

The basic concept of the least-squares method is as follows:
For an overdetermined equations expressed in the matrix form as:

A X = C, (28)

where

A =

⎡
⎢⎢⎢⎣

a11 a12 ... a1 j
a21 a22 ... a2 j
· · · ·
· · · ·

ai1 ai2 ... aij

⎤
⎥⎥⎥⎦= [L1, L2, ..., L j], X =

⎡
⎢⎢⎢⎣

x1
x2
·
·

x j

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

c1
c2
·
·

ci

⎤
⎥⎥⎥⎦ , i > j,

According to a mathematic theorem (Theorem 5.1 of [32]), ATAX = ATC is the normal equations for an overdetermined
equations. The solution of the normal equations is also the least-squares solution of the overdetermined equations.

⎡
⎢⎢⎢⎣

l11 l12 · · l1 j
l21 l22 · · l2 j
· · · · ·
· · · · ·

l j1 l j2 · · ljj

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1
x2
·
·

x j

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

LT
1 • C

LT
2 • C
·
·

LT
j • C

⎤
⎥⎥⎥⎥⎥⎦

, (29)

where lmn = LT
m • Ln (m, n = 1, 2, · · ·, j).

For the normal equations expressed by Eq. (29), we need to use a matrix solver method, such as QR factorization or
multiplication with the pseudo-inverse of A. We use the Lapack function gesvx(a, b, x) to solve it.

When using the least-squares method to solve the first-order derivatives relative to Bx, B y , all the equations are ex-
pressed in the matrix form as follows:

Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581 573
A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�x1C1 �y1C1 0 0
�x2C1 �y2C1 0 0
�x3C1 �y3C1 0 0
�x4C1 �y4C1 0 0
0 0 �x1C1 �y1C1

0 0 �x2C1 �y2C1

0 0 �x3C1 �y3C1

0 0 �x4C1 �y4C1

1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X = [u6x, u6y, u7x, u7y]T,

C(1) = u6
(
V′

1

)− u6
(
C′

1

)
− 1

2

[
u6xx

(
C′

1

)
(�x1C1)

2 + u6xy
(
C′

1

)
�x1C1�y1C1

+ u6yx
(
C′

1

)
�x1C1�y1C1 + u6yy

(
C′

1

)
(�y1C1)

2]
− 1

6

[
u6xxx

(
C′

1

)
(�x1C1)

3 + u6xxy
(
C′

1

)
(�x1C1)

2�y1C1

+ u6xyx
(
C′

1

)
(�x1C1)

2�y1C1 + u6xyy
(
C′

1

)
(�y1C1)

2�x1C1

+ u6yxx
(
C′

1

)
(�x1C1)

2�y1C1 + u6yxy
(
C′

1

)
(�y1C1)

2�x1C1

+ u6yyx
(
C′

1

)
(�y1C1)

2�x1C1 + u6yyy
(
C′

1

)
(�y1C1)

3],
C(2) = u6

(
V′

2

)− u6
(
C′

1

)
− 1

2

[
u6xx

(
C′

1

)
(�x2C1)

2 + u6xy
(
C′

1

)
�x2C1�y2C1

+ u6yx
(
C′

1

)
�x2C1�y2C1 + u6yy

(
C′

1

)
(�y2C1)

2]
− 1

6

[
u6xxx

(
C′

1

)
(�x2C1)

3 + u6xxy
(
C′

1

)
(�x2C1)

2�y2C1

+ u6xyx
(
C′

1

)
(�x2C1)

2�y2C1 + u6xyy
(
C′

1

)
(�y2C1)

2�x2C1

+ u6yxx
(
C′

1

)
(�x2C1)

2�y2C1 + u6yxy
(
C′

1

)
(�y2C1)

2�x2C1

+ u6yyx
(
C′

1

)
(�y2C1)

2�x2C1 + u6yyy
(
C′

1

)
(�y2C1)

3],
C(3) = u6

(
V′

3

)− u6
(
C′

1

)
− 1

2

[
u6xx

(
C′

1

)
(�x3C1)

2 + u6xy
(
C′

1

)
�x3C1�y3C1

+ u6yx
(
C′

1

)
�x3C1�y3C1 + u6yy

(
C′

1

)
(�y3C1)

2]
− 1

6

[
u6xxx

(
C′

1

)
(�x3C1)

3 + u6xxy
(
C′

1

)
(�x3C1)

2�y3C1

+ u6xyx
(
C′

1

)
(�x3C1)

2�y3C1 + u6xyy
(
C′

1

)
(�y3C1)

2�x3C1

+ u6yxx
(
C′

1

)
(�x3C1)

2�y3C1 + u6yxy
(
C′

1

)
(�y3C1)

2�x3C1

+ u6yyx
(
C′

1

)
(�y3C1)

2�x3C1 + u6yyy
(
C′

1

)
(�y3C1)

3],
C(4) = u6

(
V′

4

)− u6
(
C′

1

)
− 1

2

[
u6xx

(
C′

1

)
(�x4C1)

2 + u6xy
(
C′

1

)
�x4C1�y4C1

+ u6yx
(
C′

1

)
�x4C1�y4C1 + u6yy

(
C′

1

)
(�y4C1)

2]
− 1

6

[
u6xxx

(
C′

1

)
(�x4C1)

3 + u6xxy
(
C′

1

)
(�x4C1)

2�y4C1

+ u6xyx
(
C′

1

)
(�x4C1)

2�y4C1 + u6xyy
(
C′

1

)
(�y4C1)

2�x4C1

+ u6yxx
(
C′

1

)
(�x4C1)

2�y4C1 + u6yxy
(
C′

1

)
(�y4C1)

2�x4C1

+ u
(
C′)(�y)2�x + u

(
C′)(�y)3],
6yyx 1 4C1 4C1 6yyy 1 4C1

574 Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581
C(5) = u7
(
V′

1

)− u7
(
C′

1

)
− 1

2

[
u7xx

(
C′

1

)
(�x1C1)

2 + u7xy
(
C′

1

)
�x1C1�y1C1

+ u7yx
(
C′

1

)
�x1C1�y1C1 + u7yy

(
C′

1

)
(�y1C1)

2]
− 1

6

[
u7xxx

(
C′

1

)
(�x1C1)

3 + u7xxy
(
C′

1

)
(�x1C1)

2�y1C1

+ u7xyx
(
C′

1

)
(�x1C1)

2�y1C1 + u7xyy
(
C′

1

)
(�y1C1)

2�x1C1

+ u7yxx
(
C′

1

)
(�x1C1)

2�y1C1 + u7yxy
(
C′

1

)
(�y1C1)

2�x1C1

+ u7yyx
(
C′

1

)
(�y1C1)

2�x1C1 + u7yyy
(
C′

1

)
(�y1C1)

3],
C(6) = u7

(
V′

2

)− u7
(
C′

1

)
− 1

2

[
u7xx

(
C′

1

)
(�x2C1)

2 + u7xy
(
C′

1

)
�x2C1�y2C1

+ u7yx
(
C′

1

)
�x2C1�y2C1 + u7yy

(
C′

1

)
(�y2C1)

2]
− 1

6

[
u7xxx

(
C′

1

)
(�x2C1)

3 + u7xxy
(
C′

1

)
(�x2C1)

2�y2C1

+ u7xyx
(
C′

1

)
(�x2C1)

2�y2C1 + u7xyy
(
C′

1

)
(�y2C1)

2�x2C1

+ u7yxx
(
C′

1

)
(�x2C1)

2�y2C1 + u7yxy
(
C′

1

)
(�y2C1)

2�x2C1

+ u7yyx
(
C′

1

)
(�y2C1)

2�x2C1 + u7yyy
(
C′

1

)
(�y2C1)

3],
C(7) = u7

(
V′

3

)− u7
(
C′

1

)
− 1

2

[
u7xx

(
C′

1

)
(�x3C1)

2 + u7xy
(
C′

1

)
�x3C1�y3C1

+ u7yx
(
C′

1

)
�x3C1�y3C1 + u7yy

(
C′

1

)
(�y3C1)

2]
− 1

6

[
u7xxx

(
C′

1

)
(�x3C1)

3 + u7xxy
(
C′

1

)
(�x3C1)

2�y3C1

+ u7xyx
(
C′

1

)
(�x3C1)

2�y3C1 + u7xyy
(
C′

1

)
(�y3C1)

2�x3C1

+ u7yxx
(
C′

1

)
(�x3C1)

2�y3C1 + u7yxy
(
C′

1

)
(�y3C1)

2�x3C1

+ u7yyx
(
C′

1

)
(�y3C1)

2�x3C1 + u7yyy
(
C′

1

)
(�y3C1)

3],
C(8) = u7

(
V′

4

)− u7
(
C′

1

)
− 1

2

[
u7xx

(
C′

1

)
(�x4C1)

2 + u7xy
(
C′

1

)
�x4C1�y4C1

+ u7yx
(
C′

1

)
�x4C1�y4C1 + u7yy

(
C′

1

)
(�y4C1)

2]
− 1

6

[
u7xxx

(
C′

1

)
(�x4C1)

3 + u7xxy
(
C′

1

)
(�x4C1)

2�y4C1

+ u7xyx
(
C′

1

)
(�x4C1)

2�y4C1 + u7xyy
(
C′

1

)
(�y4C1)

2�x4C1

+ u7yxx
(
C′

1

)
(�x4C1)

2�y4C1 + u7yxy
(
C′

1

)
(�y4C1)

2�x4C1

+ u7yyx
(
C′

1

)
(�y4C1)

2�x4C1 + u7yyy
(
C′

1

)
(�y4C1)

3],
C(9) = 0,

where

�x1C1 = xV1 − xC1 , �x2C1 = xV2 − xC1 , �x3C1 = xV3 − xC1 , �x4C1 = xV4 − xC1 ,

�y1C1 = yV1 − yC1 , �y2C1 = yV2 − yC1 , �y3C1 = yV3 − yC1 , �y4C1 = yV4 − yC1 .

By using this method, we can obtain u6x, u6y, u7x, u7y . The other first-order derivatives are still obtained using the
method presented in section 3.3.

5. Numerical tests

In this section, we use some benchmarks to test the validity of our proposed method. We first test the accuracy of our
scheme. Then, by comparing the average magnetic field divergence error and some magnetic field divergence distribution

Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581 575
Table 1
Numerical error and error convergence rate.

N vx v y vz p

error order error order error order error order

32 5.031E−06 5.031E−06 7.115E−06 1.380E−06
64 2.058E−07 4.6115 2.058E−07 4.6115 2.911E−07 4.6113 5.210E−08 4.7272
128 9.745E−09 4.4004 9.745E−09 4.4004 1.378E−08 4.4009 2.170E−09 4.5855
256 5.252E−10 4.2137 5.252E−10 4.2137 7.428E−10 4.2135 1.015E−10 4.4181

Bx B y Bz average divB

error order error order error order error order error order

5.031E−06 5.031E−06 7.115E−06 7.115E−06 3.122E−16
2.058E−07 4.6115 2.058E−07 4.6115 2.911E−07 4.6113 2.911E−07 4.6113 1.178E−17 4.7281
9.745E−09 4.4004 9.745E−09 4.4004 1.378E−08 4.4009 1.378E−08 4.4009 4.913E−19 4.5836
5.252E−10 4.2137 5.252E−10 4.2137 7.428E−10 4.2135 7.428E−10 4.2135 2.296E−20 4.4194

contour plots, we demonstrate the excellent characteristics of the new method for keeping the magnetic field divergence-
free.

The average magnetic field divergence error is defined as follows [15]:

divB_average_error =
∑M

i=1 |(∇ · B)i|
M

, (30)

where (∇ · B)i is the magnetic divergence in the i-th computed grid point and M is the total number of computed grid
points with one time step.

5.1. Smooth Alfvén wave problem

The smooth Alfvén wave problem [17] is a very good example to test the accuracy of the scheme [33,34], and it was first
proposed by Gabor Tóth. Here, we use the smooth Alfvén wave problem to test the accuracy of our scheme.

This problem concerns the evolution of a circularly polarized Alfvén wave with a periodic boundary condition. Its initial
conditions are given as:

ρ = 1, v// = 0, v⊥ = 0.1 sin(2πx1), vz = 0.1 cos(2πx1),

p = 0.1, B// = 1, B⊥ = v⊥, Bz = vz,

where x1 = x cos(θ) + y sin(θ) and θ is the Alfvén wave propagation angle with respect to the x-axis. In this paper, we utilize
θ = π

4 . Other values can also be used; for example, Ref. [17] used θ = π
6 , and Ref. [34] used θ = arctan(2). The calculation

domain is [0, 1/ cos θ] × [0, 1/ sin θ].
The relationships between v//, v⊥ and vx, v y , B//, B⊥ and Bx, B y are:

ζ// = ζx cos(θ) + ζy sin(θ),

ζ⊥ = −ζx sin(θ) + ζy cos(θ), (ζ = v or B).

Under these initial conditions, the Alfvén wave propagates periodically with a constant wavelength λ = 1; when the time
t becomes an integer, it returns to the initial state. Therefore, the initial values are also the exact solution. As Tóth [17]
suggests, we use 0.4/N with an N × N uniform grid as the time step so that the system can reach an integer time t .

In Table 1, we list the numerical error of some primitive variables and average magnetic field divergence as well as the
average error and the relative error convergence rate at t = 2. Tóth [17] stated that the density does not participate in the
Alfvén wave and that its errors are negligible. Therefore, we do not consider the density. The average error is defined by

LN(average) = 1

4

[
LN(v⊥) + LN(vz) + LN(B⊥) + LN (Bz)

]
, (31)

where LN represents the numerical error.
The numerical error is defined as follows:

LN(um) =
∑M

i=1 |(um)num
i − (um)exact

i |
M

. (32)

where The superscript “num” represents numerical solution and “exact” denotes exact solution. M is the total number of
calculated grid points with one time step.

Then, the error convergence rate (accuracy order) is computed as:

order = log(LN1/LN2)/ log(N2/N1). (33)

576 Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581
Fig. 3. Average magnetic field divergence error with 128 × 128 grids for the smooth Alfvén wave problem. The horizontal axis represents time.

Fig. 4. Distribution of the magnetic field divergence error with 256 × 256 grids for the MHD blast wave problem at t = 0.2.

5.2. MHD vortex problem

The MHD vortex problem, also called the Orszag–Tang MHD turbulence problem, was first proposed by Orszag et al. in
1979. It is often used to test 2D MHD codes [17,28,35]. It includes some important characteristics of MHD turbulence in
which some shocks and other discontinuities occur as time evolves. The initial values are expressed as follows:

ρ = γ 2, p = γ ,

vx = − sin(y), v y = sin(x), vz = 0,

Bx = − sin(y), B y = sin(2x), Bz = 0.

where γ = 5
3 . The calculation domain is [0, 2π] × [0, 2π], and a periodic boundary is used.

5.3. MHD blast wave problem

The MHD blast problem is initiated by an over-pressured region in the center of a strongly magnetized medium with
low plasma β [28]. The region drives fast shocks moving outward, compressing the plasma and magnetic field ahead and
leaving rarefied plasma behind.

Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581 577
Fig. 5. Average magnetic field divergence error with 256 × 256 grids for the MHD vortex problem. The horizontal axis represents time.

Fig. 6. Average magnetic field divergence error with 256 × 256 grids for the MHD blast wave problem. The horizontal axis represents time.

The calculation domain is [1, 2] × [−0.5, 0.5], and a fixed boundary is used. The initial conditions are expressed as
follows:

ρ = 1, vx = v y = vz = 0, Bx = B y = 1/
√

2, Bz = 0,

p =
{

10 if
√

(x − 1.5)2 + y2 < 0.1
0.1 otherwise

.

The relative test results are as follows:
Fig. 3, Fig. 5, and Fig. 6 compare the evolution of the average magnetic-field divergence error with time between the

original fourth-order schemes with and without the least-squares method for attaining divB = 0. Fig. 4 and Fig. 7 show
contour plots of the magnetic-field divergence distribution for these two cases. From these figures, we clearly observe that
the use of the least-squares method can control the magnetic divergence efficiently, and the order of magnetic divergence
error can be reduced to approximately 5∼8. Fig. 8 and Fig. 9 give the contour plots of pressure for MHD vortex problem at
t = 3 and MHD blast wave problem at t = 0.2, respectively. We can see the structures are much clearer and identified by
using the fourth-order CESE scheme (the right column) than the second-order CESE scheme (the left column). To compare

578 Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581
Fig. 7. Distribution of the magnetic-field divergence error with 256 × 256 grids for the MHD vortex problem at t = 2 (the first row) and t = 3 (the second
row).

Fig. 8. The contour plots of pressure for MHD vortex problem at t = 3 with 512 × 512 grids by using second-order (the left column) and fourth-order (the
right column) CESE scheme, respectively.

Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581 579
Fig. 9. The contour plots of pressure for MHD blast wave problem at t = 0.2 with 256 × 256 grids by using second-order (left column) and fourth-order
(right column) CESE scheme, respectively.

Fig. 10. The pressures along the line of y = 0.625π at t = 3 for MHD vortex problem: the black line is using second-order scheme with 2048 × 2048 grids;
the red line is using second-order scheme with 512 × 512 grids; the blue line is using fourth-order scheme with 512 × 512 grids. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

in details and more clearly, we also compare the pressures along the line of y = 0.625π at t = 3 for MHD vortex problem
(Fig. 10) and along line through the center of the blast wave at t = 0.2, namely y = 0 for blast wave problem (Fig. 11). As
Fig. 10 and Fig. 11 show, the fourth-order CESE scheme (the blue lines) has remarkable advantages over the second-order
CESE scheme (the red lines) in terms of accuracy at the same grid resolution. We also test the CPU time, we use the Intel
Fortran compiler and run on the Intel Xeon E7450 with a CPU clock speed of 2.4 GHz, and using O4 optimization option.
And we find the second-order scheme need about 379 seconds and the fourth-order need about 4068 seconds for vortex
problem with 512 × 512 grids by using 24 processors. But from Fig. 10 and Fig. 11 we can see the fourth-order scheme
with less grids can achieve the similar even much better result than the second-order scheme with more grids. What’s
more, the cost of second-order scheme with much more grids is much larger, such as the vortex problem with 2048 × 2048
grids, it need at least 60 processors, and the CPU time is about 4722 seconds. At this case, the fourth-order scheme with
512 × 512 grids only need CPU time 1556 seconds. Giving a comprehensive consideration about the computation accuracy
and efficiency, the fourth-order is not expensive than the second-order scheme and can achieve a better result. Solving the
induction equation only occupy very little parts of the total time, the mainly occupied time is the solving the fluxes. Here,
we have optimized our code to reduce some unnecessary redundant calculations, such as the derivations with respect to
time t of fluxes and conservative variables as the sequence given in section 3 will be economic and effective.

About the stability condition, it’s mainly related to the CFL number, here, we have tried the CFL number from 0.3 to 0.8,
they all can maintain a good running and hasn’t produced negative pressure or negative density. For the MHD vortex and

580 Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581
Fig. 11. The pressures along line through the center (y = 0) of the blast wave at t = 0.2 for MHD blast wave problem: the black line is using second-order
scheme with 1024 ×1024 grids; the red line is using second-order scheme with 256 ×256 grids; the blue line is using fourth-order scheme with 256 ×256
grids. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

blast wave problems, both of them the CFL number used are 0.8, namely, this fourth-order scheme permit a larger time
step [36] which can help to reduce the calculation cost.

6. Conclusions

For MHD simulation, this study is the first to extend the second-order CESE scheme to a high order successfully, and the
tests demonstrate the feasibility of this scheme. This method has the following main advantages:

(1) It uses a compact stencil as in the second-order scheme and can be easily extended to arbitrary much higher order.
(2) The spatial and temporal discretization can simultaneously reach a significantly high order with one time step, which

is difficult to achieve with FVM and FDM.
(3) By taking advantage of the merits of the CESE scheme, the use of the least-squares solution method can fundamen-

tally control the magnetic field divergence error.
In future work, we aim to apply this new method to magnetic reconnection, solar wind, and interactions of solar wind

with the earth’s atmosphere to study these space physics problems more accurately using numerical simulation methods.

Acknowledgements

The work is jointly supported by the National Basic Research Program of China (Grant No. 2012CB825601), the National
Natural Science Foundation of China (Grant Nos. 41231068, 41504132, 41274192, and 41531073), the Knowledge Innovation
Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-01-4), and the Specialized Research Fund for State Key
Laboratories. The numerical calculation has been completed on our SIGMA Cluster computing system. The authors thank Dr.
Hua Shen’s inspiring discussions.

References

[1] X.Y. Wang, A Summary of the Space–Time Conservation Element and Solution Element (CESE), method, NASA/TM-2015-218743, 2015.
[2] L. Ivan, Development of High-Order CENO Finite-Volume Schemes with Block-Based Adaptive Mesh Refinement, PhD thesis, University of Toronto,

October 2010.
[3] D.S. Balsara, C. Meyer, M. Dumbser, H.J. Du, Z.L. Xu, Efficient Implementation of ADER schemes for Euler and Magnetohydrodynamical flows on struc-

tured meshes-speed comparisons with Runge–Kutta methods, J. Comput. Phys. 235 (2013) 934–969.
[4] D.S. Balsara, T. Rumpf, M. Dumbser, C.D. Munz, Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydro-

dynamics, J. Comput. Phys. 228 (2009) 2480–2516.
[5] D.S. Balsara, Higher order accuracy space–time schemes for computational astrophysics—Part I—finite volume methods, 3, arXiv:1703.01241, 2017.
[6] H. Shen, C.Y. Wen, D.L. Zhang, A characteristic space–time conservation element and solution element method for conservation laws, J. Comput. Phys.

288 (2015) 101–118.
[7] Andrew J. Christlieb, Yaman Guclu, David C. Seal, The PICARD integral formulation of weighted essentially nonoscillatory schemes, SIAM J. Numer. Anal

53 (4) (2015) 1833–1856.
[8] S.T. Li, Higher-order time integration with a local Lax–Wendroff procedure for a central scheme on an overlapping grid, J. Comput. Appl. Math. 236

(2012) 4756–4761.
[9] S.C. Chang, The method of space–time conservation element and solution element—a new approach for solving the Navier–Stokes and Euler equations,

J. Comput. Phys. 119 (1995) 295–324.
[10] S.C. Chang, A New Approach for Constructing Highly Stable High Order CESE Schemes, NASA/TM 2010-216766, 2010.

http://refhub.elsevier.com/S0021-9991(17)30590-9/bib31s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib32s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib32s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib33s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib33s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib34s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib34s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib35s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib36s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib36s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib37s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib37s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib38s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib38s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib39s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib39s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3130s1

Y. Yang et al. / Journal of Computational Physics 349 (2017) 561–581 581
[11] D. Bilyeu, Y.Y. Chen, S.T. John Yu, High-order CESE methods for the Euler equations, in: 49th AIAA Aerospace Sciences Meeting Including the New
Horizons Forum and Aerospace Exposition, Orlando, Florida, 4–7 Jan., 2011, AIAA 2011-298.

[12] D. Bilyeu, A High-Order Conservation Element Solution Element Method for Solving Hyperbolic Differential Equations on Unstructured Grid, PhD thesis,
University of the Ohio State, 2014.

[13] K.X. Liu, J.T. Wang, Analysis of high accuracy conservation element and solution element schemes, Chin. Phys. Lett. 21 (2004) 2085–2088.
[14] H. Shen, C.Y. Wen, K.X. Liu, Robust high-order space–time conservative schemes for solving conservation on hybrid Meshes, J. Comput. Phys. 281 (2015)

375–402.
[15] X.S. Feng, Y.Q. Hu, F.S. Wei, Modeling the resistive MHD by the CESE method, Sol. Phys. 235 (2006) 235–257.
[16] R.L. Jiang, C. Fang, P.F. Chen, A new MHD code with adaptive mesh refinement and parallelization for astrophysics, Comput. Phys. Commun. 183 (2012)

1617–1633.
[17] G. Tóth, The constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys. 161 (2000) 605–652.
[18] M. Zhang, X.S. Feng, A comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation, Front. Astron.

Space Sci. 3 (2016) 6.
[19] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. DeZeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys. 154

(1999) 284–309.
[20] J.U. Brackbill, D.C. Barnes, The effect of nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys. 35 (1980)

426–430.
[21] B. vanderHolst, R. Keppens, Hybrid block-AMR in Cartesian and Curvilinear coordinates: MHD applications, J. Comput. Phys. 226 (2007) 925–946.
[22] C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows—a constrained transport method, Astrophys. J. 332 (1988) 659–677.
[23] A. Dedner, F. Kemm, D. Króner, C.D. Munz, T. Schnitzer, W. Wesenberg, Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys. 175

(2002) 645–673.
[24] D.S. Balsara, Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser. 151 (2004)

149–184.
[25] D.S. Balsara, Divergence-free adaptive mesh refinement for Magnetohydrodynamics, J. Comput. Phys. 174 (2001) 614–648.
[26] D.S. Balsara, D.S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic

simulations, J. Comput. Phys. 149 (1999) 270–292.
[27] D.S. Balsara, Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys. 228 (2009) 5040–5056.
[28] C.W. Jiang, X.S. Feng, J. Zhang, D.K. Zhong, AMR simulations of magnetohydrodynamic problems by the CESE method in curvilinear coordinates, Sol.

Phys. 267 (2010) 463–491.
[29] Y.F. Zhou, X.S. Feng, An improved CESE method and its application to steady-state coronal structure simulation, Sci. China Earth Sci. 153 (166) (2014).
[30] Y.F. Zhou, X.S. Feng, A new hybrid numerical scheme for two-dimensional ideal MHD equations, Chin. Phys. Lett. 27 (2010) 085201.
[31] C.L. Chang, Time-accurate local time stepping and high-order space–time CESE methods for multi-dimensional flows with unstructured meshes, in:

21st AIAA Computational Fluid Dynamics Conference.

[32] , C (), .
[33] S.T. Li, High order central scheme on overlapping cells for magnetohydrodynamic flows with and without constrained transport method, J. Comput.

Phys. 227 (2008) 7368–7393.
[34] Thomas A. Gardiner, James M. Stone, An unsplit Godunov method for ideal MHD via constrained transport, arXiv:astro-ph/0501557v1, 25 Jan 2005.
[35] G.S. Jiang, C.C. Wu, A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 150 (1999)

561–594.
[36] D.S. Balsara, Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows, J. Comput. Phys. 229 (2010) 1970–1993.

http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3131s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3131s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3132s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3132s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3133s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3134s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3134s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3135s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3136s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3136s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3137s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3138s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3138s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3139s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3139s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3230s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3230s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3231s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3232s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3233s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3233s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3234s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3234s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3235s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3236s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3236s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3237s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3238s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3238s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3239s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3330s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3333s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3333s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3334s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3335s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3335s1
http://refhub.elsevier.com/S0021-9991(17)30590-9/bib3336s1

	A high-order CESE scheme with a new divergence-free method for MHD numerical simulation
	1 Introduction
	2 MHD governing equations
	3 Construction of the high-order CESE scheme
	3.1 Time-marching for the third-order derivatives of conservative variables
	3.2 Time-marching for the second-order derivatives of conservative variables
	3.3 Time-marching for the ﬁrst-order derivatives of conservative variables

	4 New method for keeping the magnetic ﬁeld divergence-free
	5 Numerical tests
	5.1 Smooth Alfvén wave problem
	5.2 MHD vortex problem
	5.3 MHD blast wave problem

	6 Conclusions
	Acknowledgements
	References

