
Computer Physics Communications 182 (2011) 2132–2160
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Efficient magnetohydrodynamic simulations on graphics processing units with
CUDA

Hon-Cheng Wong a,b,∗, Un-Hong Wong b, Xueshang Feng c, Zesheng Tang b

a Faculty of Information Technology, Macau University of Science and Technology, Macao, China
b Space Science Institute, Macau University of Science and Technology, Macao, China
c SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 February 2010
Received in revised form 12 March 2011
Accepted 15 May 2011
Available online 18 May 2011

Keywords:
MHD simulations
GPUs
CUDA
Parallel computing

Magnetohydrodynamic (MHD) simulations based on the ideal MHD equations have become a powerful
tool for modeling phenomena in a wide range of applications including laboratory, astrophysical,
and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are
computationally expensive and Beowulf clusters or even supercomputers are often used to run the
codes that implemented these methods. With the advent of the Compute Unified Device Architecture
(CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing
for scientific simulations. In this paper we present, to the best of the author’s knowledge, the first
implementation of MHD simulations entirely on GPUs with CUDA, named GPU-MHD, to accelerate the
simulation process. GPU-MHD supports both single and double precision computations. A series of
numerical tests have been performed to validate the correctness of our code. Accuracy evaluation by
comparing single and double precision computation results is also given. Performance measurements
of both single and double precision are conducted on both the NVIDIA GeForce GTX 295 (GT200
architecture) and GTX 480 (Fermi architecture) graphics cards. These measurements show that our GPU-
based implementation achieves between one and two orders of magnitude of improvement depending
on the graphics card used, the problem size, and the precision when comparing to the original serial CPU
MHD implementation. In addition, we extend GPU-MHD to support the visualization of the simulation
results and thus the whole MHD simulation and visualization process can be performed entirely on GPUs.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Magnetohydrodynamic (MHD) equations can be used in model-
ing phenomena in a wide range of applications including labora-
tory [5], astrophysical [48], and space plasmas [11]. For example,
3D MHD simulations have been widely adopted in space weather
simulations. The historical review and current status of the existing
popular 3D MHD models can be found in [8] and [9], respectively.
However, MHD equations form a nonlinear system of hyperbolic
conservation laws, which is so complex that high-resolution meth-
ods are necessary to solve them in order to capture shock waves
and other discontinuities. These high-resolution methods are in
general computationally expensive and parallel computational re-
sources such as Beowulf clusters or even supercomputers are often
utilized to run the codes that implemented these methods [29,16,
22,17,59].

* Corresponding author at: Faculty of Information Technology, Macau University
of Science and Technology, Macao, China.

E-mail address: hcwong@ieee.org (H.-C. Wong).
0010-4655/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2011.05.011
In the last few years, the rapid development of graphics pro-
cessing units (GPUs) makes them more powerful in performance
and more programmable in functionality. By comparing the com-
putational power of GPUs and CPUs, GPUs exceed CPUs by orders
of magnitude. The theoretical peak performance of the current
consumer graphics card NVIDIA GeForce GTX 295 (with two GPUs)
is 936G floating-point operations per second (FLOPS) per GPU in
single precision while a CPU (Core 2 Quad Q9650 — 3.0 GHz) gives
a peak performance of around 96GFLOPS in single precision. The
release of the Compute Unified Device Architecture (CUDA) [30] hard-
ware and software architecture is the culmination of such develop-
ment. With CUDA, one can directly exploit a GPU as a data-parallel
computing device by programming with the standard C language
and avoid working with a high-level shading language such as
Cg [28], which requires a significant amount of graphics specific
knowledge and was previously used for performing computation
on GPUs. Detailed performance studies on GPUs with CUDA can be
found in [4] and [41].

CUDA is a general purpose parallel computing architecture
developed by NVIDIA. It includes the CUDA Instruction Set

http://dx.doi.org/10.1016/j.cpc.2011.05.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:hcwong@ieee.org
http://dx.doi.org/10.1016/j.cpc.2011.05.011


H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2133
Architecture (ISA) and the parallel compute engine. An exten-
sion to C programming language and its compiler are provided,
making the parallelism and high computational power of GPUs
available not only for rendering and shading, but also for solving
many computationally intensive problems in a fraction of the time
required on a CPU. CUDA also provides basic linear algebra sub-
routines (CUBLAS) and fast Fourier transform (CUFFT) libraries to
leverage GPUs’ capabilities. These libraries release developers from
rebuilding the frequently used basic operations such as matrix
multiplications. Graphics cards from G8x series support the CUDA
programming mode; and the latest generation of NVIDIA GPUs
(GT2x0 series or later) unifies vertex and fragment processors and
provides shared memory for interprocessor communications.

A increasing number of new GPU implementations with CUDA
in different astrophysical simulations have been proposed. Belle-
man et al. [2] re-implemented the direct gravitational N-body
simulations on GPUs using CUDA. For N � 105, they reported a
speedup of about 100 compared to the host CPU and about the
same speed as the GRAPE-6Af. A library Sapporo for performing
high precision gravitational N-body simulations was developed on
GPUs by Gaburov et al. [13]. This library achieved twice as fast as
commonly used GRAPE6A/GRAPE6-BLX cards. Stantchev et al. [46,
47] implemented a Particle-In Cell (PIC) code on GPUs for plas-
mas simulations and visualizations and demonstrated a speedup
of 11–22 for different grid sizes. Sainio [39] presented an acceler-
ated GPU cosmological lattice program for solving the evolution
of interacting scalar fields in an expanding universe, achieving
speedups between one and two orders of magnitude in single pre-
cision. In the aforementioned work, no discussion on using double
precision on GPUs was reported. In MHD simulations, the support
of double precision is important, especially for nonlinear problems.
We will evaluate the performance and accuracy of double precision
on GPUs in this work.

In this paper, we present an efficient implementation to accel-
erate the computation of MHD simulations on GPUs, called GPU-
MHD. To the best of our knowledge, this is the first report de-
scribing MHD simulations on GPUs in detail. The goal of our work
is to perform a pilot study on numerically solving the ideal MHD
equations on GPUs. In addition, the trend of today’s chip design
is moving to streaming and massively parallel processor models,
developing new MHD codes to exploit such architecture is essen-
tial. GPU-MHD can be easily ported to other many-core platforms
such as Intel’s upcoming Larrabee [43], making it more flexible for
the user’s choice of hardware. This paper is organized as follows:
A brief description of the CUDA programming model is given in
Section 2. The numerical scheme in which GPU-MHD adopted is
presented in Section 3. In Section 4, we present the GPU imple-
mentation in detail. Numerical tests are given in Section 5. Accu-
racy evaluation by comparing single and double precision compu-
tation results is given in Section 6. Performance measurements are
reported in Section 7 and visualization of the simulation results is
described in Section 8. We conclude our work and indicate some
directions for possible future work in Section 9.

2. A brief description of the CUDA

The Compute Unified Device Architecture (CUDA) was intro-
duced by NVIDIA as a general purpose parallel computing ar-
chitecture, which includes GPU hardware architecture as well as
software components (CUDA compiler and the system drivers and
libraries). The CUDA programming model [20,30,40] consists of
functions, called kernels, which can be executed simultaneously by
a large number of lightweight threads on the GPU. These threads
are grouped into one-, two-, or three-dimensional thread blocks,
which are further organized into one- or two-dimensional grids.
Only threads in the same block can share data and synchronize
with each other during execution. Thread blocks are independent
of each other and can be executed in any other. A graphics card
that supports CUDA, for example, the GT200 GPU [27], consists
of 30 streaming multiprocessors (SMs). Each multiprocessor con-
sists of 8 streaming processors (SPs), providing a total of 240 SPs.
Threads are grouped into batches of 32 called warps which are
executed in single instruction multiple data (SIMD) fashion inde-
pendently. Threads within a warp execute a common instruction
at a time.

For memory access and usage, there are four types of memory,
namely, global memory, constant memory, texture memory as well
as shared memory. Global memory has a separate address space
for obtaining data from the host CPU’s main memory through the
PCIE bus, which is about 8 GB/sec in the GT200 GPU. Any val-
ued stored in the global memory can be accessed by all SMs via
load and store instructions. Constant memory and texture mem-
ory are cached, read-only and shared between SPs. Constants that
are kept unchanged during kernel execution may be stored in con-
stant memory. Built-in linear interpolation is available in texture
memory. Shared memory is limited (16 KB for GT200 GPU) and
shared among all SPs in an MP. For detailed information con-
cerning memory optimizations, we refer the reader to “CUDA Best
Practice Guide” [32].

Double precision is one important concern in many computa-
tional physics applications, however, support of double precision
is limited to the NVIDIA cards having Compute Capability 1.3 (see
Appendix A in [30]) such as the GTX 260, GTX 280, Quadro FX
5800 (contains one GT200 GPU), and Tesla C1060 (contains one
GT200 GPU) and S1070 (contains four GT200 GPUs). In GT200
GPU, there are eight single precision floating point (FP32) arith-
metic logic units (ALUs) (one per SP) in SM, but only one double
precision floating point (FP64) ALU (shared by eight SPs). The the-
oretical peak performance of GT200 GPU is 936 GFLOPS in single
precision and 78 GFLOPS in double precision. In CUDA, double
precision is disabled by default, ensuring that all double num-
bers are silently converted into float numbers inside kernels and
any double precision calculations computed are incorrect. In order
to use double precision floating point numbers, we need to call
nvcc: “-arch = sm_13”. The flag “-arch = sm_13” in the
command tells “nvcc” to use the Compute Capability 1.3 which
means enabling the double precision support. The recent Fermi ar-
chitecture [32] (GTX 480, for example) significantly improves the
performance of double precision calculations by introducing better
memory access mechanisms.

In Sections 6 and 7 we will compare the accuracy and actual
performance of GPU-MHD in single and double precision on both
GT200 and Fermi architectures.

3. Numerical scheme

The ideal MHD equations with the assumption of the magnetic
permeability μ = 1 can be represented as hyperbolic system of
conservation laws as follows [14]

∂ρ

∂t
+ ∇·(ρv) = 0 (1)

∂ρv

∂t
+ ∇ · (ρv v − B B) + ∇P∗ = 0 (2)

∂ B

∂t
− ∇×(v × B) = 0 (3)

∂ E

∂t
+ ∇ · ((E + P∗)v − B(B · v)

) = 0 (4)

Here, ρ is the mass density, ρv the momentum density, B the
magnetic field, and E the total energy density. The total pressure
P∗ ≡ P + B2

where P is the gas pressure that satisfies the equation
2



2134 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
of state, P ≡ (γ −1)(E −ρ v2

2 − B2

2 ). In addition, the MHD equations
should obey the divergence-free constraint ∇ · B = 0.

Over the last few decades, there has been a dramatic increase
in the number of publications on the numerical solution of ideal
MHD equations. In particular the development of shock-capturing
numerical methods for ideal MHD equations. We do not provide
an exhaustive review of the literature here. A comprehensive treat-
ment of numerical solution of MHD equations can be found in [21],
for example. Pen et al. [35] proposed a free, fast, simple, and effi-
cient total variation diminishing (TVD) MHD code featuring mod-
ern high-resolution shock capturing on a regular Cartesian grid.
This code is second-order accuracy in space and time and en-
forces the ∇ · B = 0 constraint to machine precision and it was
successfully used for studying nonradiative accretion onto the su-
permassive black hole [36] and fast magnetic reconnection [34].
Due to these advantages and convenience for GPU versus CPU com-
parison, the underlying numerical scheme in GPU-MHD is based on
this work. A detailed comparison of shock capturing MHD codes
can be found in [52], for example. We plan to explore other recent
high-order Godunov schemes such as [23] and [50] for GPU-MHD
as our planned future work.

We briefly review the numerical scheme [35] we adopted in
GPU-MHD here. In this numerical scheme, the magnetic field is
held fixed first and then the fluid variables are updated. A re-
verse procedure is then performed to complete a one time step.
The three-dimensional problem is split into one-dimensional sub-
problems by using a Strang-type directional splitting [51].

Firstly, we describe the fluid update step in which the fluid
variables are updated while holding the magnetic field fixed. The
magnetic field is interpolated to cell centers for second-order accu-
racy. By considering the advection along the x direction, the ideal
MHD equations can be written in flux-conservative vector form as
follows

∂u

∂t
+ ∂ F (u)

∂x
= 0 (5)

where the flux vector is given by

F =

⎛
⎜⎜⎜⎝

ρvx

ρv2
x + P∗ − B2

x
ρvx v y − Bx B y

ρvx vz − Bx Bz

(E + P∗)vx − BxB · v

⎞
⎟⎟⎟⎠ (6)

Eq. (5) is then solved by Jin and Xin’s relaxing TVD method [18].
With this method, a new variable w = F (u)/c is defined, where
c(x, t) is a free positive function called the flux freezing speed.
For ideal MHD equations, we have u = (u1, u2, u3, u4, u5) =
(ρ,ρvx,ρv y,ρvz, E) and equations

∂u

∂t
+ ∂

∂x
(cw) = 0 (7)

∂ w

∂t
+ ∂

∂x
(cu) = 0 (8)

These equations can be decoupled through a change of left- and
right-moving variables uR = (u + w)/2 and uL = (u − w)/2

∂uR

∂t
+ ∂

∂x

(
cuR) = 0 (9)

∂uL

∂t
− ∂

∂x

(
cuL) = 0 (10)

The above pair of equations is then solved by an upwind
scheme, separately for right- and left-moving waves, using cell-
centered fluxes. Second-order spatial accuracy is achieved by inter-
polating of fluxes onto cell boundaries using a monotone upwind
schemes for conservation laws (MUSCL) [56] with the help of the
flux limiter. Runge–Kutta scheme is used to achieve second-order
accuracy of time integration.

We denote ut
n as the cell-centered values of the cell n at time t ,

F t
n as the cell-centered flux in cell n. As an example, we consider

the positive advection velocity, negative direction can be obtained
in a similar way. We obtain the first-order upwind flux F (1),t

n+1/2

from the averaged flux F t
n in cell n. Two second-order flux cor-

rections can be defined using three local cell-centered fluxes as
follows

�F L,t
n+1/2 = F t

n − F t
n−1

2
(11)

�F R,t
n+1/2 = F t

n+1 − F t
n

2
(12)

When the corrections have opposite signs,there is no second-order
correction in the case of near extrema. With the aid of a flux lim-
iter φ we then obtain the second-order correction

�F t
n+1/2 = φ

(
�F L,t

n+1/2,�F R,t
n+1/2

)
(13)

The van Leer limiter [55]

vanleer(a,b) = 2ab

a + b
(14)

is used in GPU-MHD. By adding the second-order correction to the
first-order fluxes we obtain second-order fluxes. For example, the
second-order accurate right-moving flux F R,t

n+1/2 can be calculated

F R,t
n+1/2 = F t

n + �F t
n+1/2 (15)

The time integration is performed by calculating the fluxes
F (ut

n) and the freezing speed ct
n in the first half time step is given

as follows

ut+�t/2
n = ut

n −
( F t

n+1/2 − F t
n−1/2

�x

)
�t

2
(16)

where F t
n+1/2 = F R,t

n+1/2 − F L,t
n+1/2 is computed by the first-order

upwind scheme. By using the second-order TVD scheme on
ut+�t/2

n , we obtain the full time step ut+�t
n

ut+�t
n = ut

n −
( F t+�t/2

n+1/2 − F t+�t/2
n−1/2

�x

)
�t (17)

To keep the TVD condition, the flux freezing speed c is the max-
imum speed information can travel and should be set to |vx| +
(γ p/ρ + B2/ρ)1/2 as the maximum speed of the fast MHD wave
over all directions is chosen. As the time integration is imple-
mented using a second-order Runge–Kutta scheme, the time step
is determined by satisfying the CFL condition

cmax = [
max

(|vx|, |v y|, |vz|
) + (

γ p/ρ + B2/ρ
)1/2]

�t = cfl/cmax (18)

where cfl is the Courant number and cfl � 1 is generally set to
cfl � 0.7 for stability, and B is the magnitude of the magnetic field.
Constrained transport (CT) [10] is used to keep the ∇ · B = 0 to
machine precision. Therefore, the magnetic field is defined on cell
faces and it is represented in arrays [35]

Bx(i, j,k) = (Bx)i−1/2, j,k

B y(i, j,k) = (B y)i, j−1/2,k

Bz(i, j,k) = (Bz)i, j,k−1/2 (19)



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2135
where the cell centers are denoted by (i, j,k) ≡ (xi, y j, zk), and
faces by (i ± 1/2, j,k), (i, j ± 1/2,k), and (i, j,k ± 1/2), etc. The
cells have unit width for convenience.

Secondly, we describe the update of the magnetic field in sep-
arate two-dimensional advection-constraint steps along x-direction
while holding the fluid variables fixed. The magnetic field updates
along y- and z-directions can be handled in a similar matter. We
follow the expressions used in [19]. For example, we can calculate
the average of the v along x-direction as follows

(vx)i, j+1/2,k

= 1

4

[
(vx)i+1, j+1/2,k + 2(vx)i, j+1/2,k + (vx)i−1, j+1/2,k

]
(20)

A first-order accurate flux is then obtained by

(vx B y)i+1/2, j+1/2,k

=
{

(vx B y)i, j+1/2,k, (vx)i+1/2, j+1/2,k > 0

(vx B y)i+1, j+1/2,k, (vx)i+1/2, j+1/2,k � 0
(21)

where the velocity average is

(vx)i+1/2, j+1/2,k = 1

2

[
(vx)i, j+1/2,k + (vx)i+1, j+1/2,k

]
(22)

Bx is updated by constructing a second-order accurate upwind
electromotive force (EMF) v y Bx using Jin and Xin’s relaxing TVD
method [18] in the advection step. Then this same EMF is imme-
diately used to update B y in the constraint step.

Extension to three dimensions can be performed through a
Strang-type directional splitting [51]. Eq. (5) is dimensionally split
into three separate one-dimensional equations. For a time step
�t , let fluidx be the fluid update along x, Bx→y be the update
of Bx along y, and Li be the update operator of ut to ut+�t by
including the flux along i direction. Each Li includes three up-
date operations in sequence, for example, Lx includes fluidx , B y→x ,
and Bz→x . A forward sweep and a reverse sweep are defined as
ut+�t = Lz L y Lxut and ut+2�t = LxL y Lzut+�t , respectively. A com-
plete update combines a forward sweep and reverse sweep. The
dimensional splitting of the relaxing TVD can be expressed as fol-
lows [54]

ut2 = ut1+2�t1 = LxL y Lz Lz L y Lxut1 (23)

ut3 = ut2+2�t2 = Lz LxL y L y LxLzut2 (24)

ut4 = ut3+2�t3 = L y Lz LxLxLz L y ut3 (25)

where �t1, �t2, and �t3 are sequential time steps after each dou-
ble sweep. For Cartesian coordinate system, it is easy to apply
Strang-type directional splitting [51] on a high-dimensional prob-
lem and split it into one-dimensional sub-problems in Cartesian
coordinate system [25]. In principle, we can also apply directional
splitting for cylindrical or spherical coordinate systems. We may
need to split the edges of grid in any direction into equal-distance
pieces and determine the positions of the cell centers and face
centers. Similar techniques from Li and Li [26] can be utilized to
extend the usage of directional splitting for cylindrical or spherical
coordinate systems. This extension will be left as possible future
work.

4. GPU implementation

In this section, we provide the implementation details of GPU-
MHD. With GPU-MHD, all computations are performed entirely on
GPUs and all data is stored in the GRAM of the graphics card.
Currently, GPU-MHD works on a regular Cartesian grid and sup-
ports both single and double precision modes. Considering the
rapid development of graphics hardware, our GPU implementa-
tion was design in general for the GT200 architecture (GTX 295
in our study) and the Fermi architecture (GTX 480 in our study).
Therefore, GPU-MHD can be used on newer architectures without
significant modification.

Before we explain our GPU implementation in detail, the con-
sideration and strategy of our design is presented first. During the
computational process, the TVD numerical scheme for solving the
MHD equations will generate many intermediate results such as
the “flux” and some interpolated values of each grid point. These
intermediate results will then be used in the next calculation step.
One important aspect is that both these intermediate results of the
current grid point and also those of the neighboring grid points are
needed to be stored. This means the intermediate results of the
neighboring grid points have to be calculated before going to the
next calculation step. As a result, each calculation step in the algo-
rithm was designed with one or several kernels and huge amount
of data should be stored. In order to avoid the data transmission
between CPU and GPU during the computation, GPU-MHD was de-
signed to be run entirely on GPUs. To reduce the memory usage,
the storage for the intermediate results will be reused to store the
intermediate results generated by the next step. The eight compo-
nents (u1, u2, u3, u4, u5, Bx, B y, Bz) for solving the MHD equations
are stored in the corresponding eight arrays. Each component of a
grid point is stored close to the same component of the neighbor-
ing gird points. In any calculation step, only the necessary com-
ponent of a calculation (kernel) will be accessed, thus providing
more effective input/output access. The strategy of our design is
summarized as follows:

• Each step of the numerical scheme is handled with one or sev-
eral kernels to exploit the parallelism of GPUs;

• Storage of the intermediate results are reused to reduce mem-
ory usage;

• Components of the MHD equations are stored in separate ar-
rays to provide effective memory access.

4.1. Memory arrangement

Although shared memory provides much faster access rate than
global memory, its size is very limited (16 kB in GTX 295 and
48 kB in GTX 480). As we have to process many intermediate re-
sults in each calculation step, shared memory is too small to fit
in our GPU implementation. Of course there are some techniques
of using shared memory, the basic idea is to copy the data from
global memory to the shared memory first, and then use the data
in shared memory to do the calculations. After the calculations
have been completed, write these results back to global memory.
This will benefit those computations that need many data accesses
during the calculation period. However, as we mentioned in the
beginning of this section, due to the nature of the algorithm, GPU-
MHD was designed with many separated CUDA kernels. Calculation
of each kernel is actually simple and variables of grid points in
each kernel are mostly accessed only once (read) or twice (read
and then write the result). In order to provide fast access speed,
parameters and temporary results (generated and used only within
kernel) in each kernel are stored with registers. The parameters for
the whole simulation such as the data size and size of dimensions
are stored using constant memory. Thus in our case, the shared
memory does not show its advantages. On the other hand, the
size of the shared memory is too small for our problem, espe-
cially when double precision is used in the calculations. We did
try to use the shared memory in GPU-MHD by copying the amount
of data that the shared memory is capable to store to the shared
memory for the calculations, but there is no speedup compared
to our current approach. Therefore, our code mainly uses global



2136 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Fig. 1. An example demonstrating the automatic coalescing in the GT200 architecture.
Fig. 2. Mapping from 3D array to 1D array in column major.

memory. There are three phases in our code: transfer of data from
the host memory into the global memory, execution of the kernels,
and transfer of data from the GPU into the host memory.

For global memory, if the data is well organized in the global
memory with the form that a load statement in all threads in
a warp accesses data in the same aligned 128-byte block, then
the threads can efficiently access data from the global memory.
The process of organizing the data in such a form is so-called co-
alescing [31,20]. Actually, the GT200 architecture (with Compute
Capability 1.2 or 1.3) has more flexibility in handling data in the
global memory than those cards with Compute Capability 1.1 or
lower. Coalescing of loading and storing data that are not aligned
perfectly to 128-byte boundaries is handled automatically on this
architecture (see Appendix G.3.2.2 in [31]). We illustrate this new
feature in Fig. 1. The GT200 architecture supports 32 bytes memory
block and has less limitation to memory address, which is accessed
by the header (first) thread. Even without “shifting” the address to
aligned 64 bytes or 128 bytes, the GPU kernels can still keep good
performance, especially when we only process with 2n data.

The memory arrangement of GPU-MHD is presented here. The
most intuitive way to write a parallel program to solve a multi-
dimensional problem is to use multidimensional arrays for data
storage and multidimensional threads for the computation. How-
ever, the ability of the current CUDA is limited in supporting
multidimensional threads, therefore, we could not implement our
code in such a straightforward way. Especially in three dimensions
or higher dimensions, there are still some limitations in handling
multidimensional arrays and multidimensional threads. As a result,
the most primitive way is to store the data in one-dimensional ar-
rays and perform the parallel computation with one-dimensional
threads. By using an indexing technique, our storage and threading
method can be extended to solve multidimensional problems. Our
data storage arrangement is expressed in Fig. 2 and in Eqs. (26)
to (28).⎧⎨
⎩

INDEXx = index/(SIZEy × SIZEz)

INDEX y = [index mod (SIZEy × SIZEz)]/SIZEz

INDEXz = index mod SIZEz

(26)

INDEXx ± 1 = index ± (SIZEy × SIZEz) (27)
INDEX y ± 1 = index ± SIZEz (28)

INDEXz ± 1 = index ± 1 (29)

Here INDEXx , INDEX y , and INDEXz are the indexes of a 3D matrix.
index is the 1D index used in GPU-MHD, SIZEy , and SIZEz are the
matrix size (number of grid points in our study) of a 3D matrix.

Eq. (26) expresses the mapping of three-dimensional (3D) in-
dexes to one-dimensional (1D) indexes. Eqs. (28) to (29) express
the shift operations. Shift operations are very important in numer-
ical solution of conservation laws because some calculations are
based on the neighboring grid points. The above indexing tech-
nique is used to prepare suitable values (vectors) as input values
for the calculation kernels we implemented in CUDA. As an exam-
ple, we give a conceptual calculation kernel for a calculation in the
x-dimension to show how the indexing technique works for this
task in the following. This kernel calculates the result with the
grid point itself and neighboring gird points in the x-dimension.
The calculations in the y- or the z-dimension have a similar form.

Calculate_X(data, result) {
index = getID();

//self-increment index for multi-threading
grid_point_index = index; //(x, y, z)
neighbor_1 = grid_point_index + (SIZEy * SIZEz);

//(x + 1, y, z)
neighbor_2 = grid_point_index - (SIZEy * SIZEz);

//(x - 1, y, z)

calculate_kernel(data, result, grid_point_index,
neighbor_1, neighbor_2, ...);

......
}

The indexing technique is a common way to represent multidi-
mensional arrays using 1D arrays by mapping a 3D index (x, y, z)
to a 1D index (x × Ysize × Zsize + y × Zsize + z). The GPU kernels of
TVD were designed such that each kernel calculates using the ac-
tual index of a particular grid point and its neighbors. For example,
if the calculation needs the information in a particular gird point
and its neighboring grid points in the z-dimension, then the index-
ing operation will retrieve [x×Ysize × Zsize + y × Zsize +(z−1)], [x×
Ysize × Zsize + y × Zsize + z] and [z × Ysize × Zsize + y × Zsize + (z +1)]
and proceed with the calculation. If the calculation needs the in-
formation in a particular grid point and its neighboring grid points
in the y-dimension, then the indexing operation will retrieve
[x× Ysize × Zsize + (y −1)× Zsize + z], [x× Ysize × Zsize + y × Zsize + z]
and [x × Ysize × Zsize + (y + 1) × Zsize + z]. Then these resulting
indexes from indexing operation will pass to the GPU kernels of



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2137
Fig. 3. The flow chart of GPU-MHD.
TVD for performing the calculation. As a result, for N-dimension
problems, what we need are the N-dimension indexing operation
kernels while only one TVD kernel is needed at all the time.

For efficiency, GPU-MHD only processes the problem with the
number of grid points satisfying the 2n condition. One reason is
that the size of a warp of GPU contains 32 threads, problems with
grid point number of 2n are easier to determine the number of
threads and blocks to fit in multiple of a warp before the GPU
kernel is called. That means we do not need to check if the ID
of the grid point being processed (calculated by the block ID and
thread ID) is out of the range. It is very helpful in making the GPU
code run more efficiently. On the other hand, it is also effective to
reduce logical operations in a GPU kernel, which is known to be
a little bit slow in the current GPU architecture. As a result, warp
divergence caused by the number of the data is avoided (there is
still a little bit warp divergence caused by the “if” operation in
the calculation of our algorithm). A similar method is used in the
CUDA SDK code sample “reduction”.

The actual memory pattern used in GPU-MHD will be presented
at the end of next subsection after introducing our algorithm.

4.2. Program flow

A “CUDA kernel” is a function running on GPU [20,30,40]. Noted
that the CUDA kernel will process all grid points in parallel, there-
fore, a For instruction is not needed for going through all grid
points. GPU-MHD includes the following steps:

(1) CUDA initialization
(2) Setup the initialize condition for the specified MHD problem:

u = (u1, u2, u3, u4, u5) of all grid points, B = (Bx, B y, Bz) of
cell faces, and set parameters such as time t , etc.
(3) Copy the initialize condition u, B to device memory (CUDA
global memory)

(4) For all grid points, calculate the cmax by Eq. (18) (imple-
mented with a CUDA kernel)

(5) Use cublasIsamax (in single precision mode) function or
cublasIdamax (in double precision mode) function of the
CUBLAS library to find out the maximum value of all cmax,
and then determine the �t

(6) Since the value of �t is stored in device memory, read it back
to host memory (RAM)

(7) Sweeping operations of the relaxing TVD (calculation of the
Li , i = x, y, z, implemented with several CUDA kernels, will
be explained in the next subsection)

(8) t = t + 2�t
(9) If t reaches the target time, go to next step else repeat the

procedure from step (4)
(10) Read back data u, B to host memory
(11) Output the result

The program flow of GPU-MHD is shown in Fig. 3. After the
calculation of the CFL condition, the sweeping operations will be
performed. The sweeping operation Li will update both the fluid
variables and orthogonal magnetic fields along the i dimension.
This is a core computation operation in the relaxing TVD scheme
described in Section 3.

The CFL condition for the three-dimensional relaxing TVD
scheme is obtained by Eq. (18). The procedure is to calculate all
the cmax of each grid point and find out the maximum value. In
GPU-MHD, the parallel computation power of CUDA is exploited to
calculate the cmax of each grid point in parallel and all the cmax
values are stored in a matrix. Then the cublasIsamax function



2138 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Fig. 4. Calculation process of Lx .
is used (in double precision mode, the cublasIdamax function
is used) to find out the maximum cmax of the matrix in parallel
(called the reduction operation). The cublasIsamax function is
provided in the CUBLAS library — a set of basic operations for vec-
tor and matrix provided by NVIDIA with the CUDA toolkit [30].
The reason we read the �t back and store both �t and t in the
host memory is due to the data in the device memory cannot be
printed out directly in the current CUDA version. This information
is useful for checking if there is any problem during the simula-
tion. The implementation of sweeping operations will be explained
in the next subsection.

4.3. Sweeping operations

Before we start to describe the sweeping operations, considera-
tion of the memory arrangement is presented first in the following.

Implementing parallel computation using CUDA kernels is
somewhat similar to parallel implementation on a CPU-cluster, but
it is not the same. The major concern is the memory constrain in
GPUs. CUDA makes parallel computation process on GPUs which
can only access their graphics memory (GRAM). Therefore, data
must be stored in GRAM in order to be accessed by GPUs. There
are several kinds of memory on graphics hardware including reg-
isters, local memory, shared memory, and global memory, etc., and
they have different characteristics and usages [30], making mem-
ory management of CUDA quite different compared to the parallel
computation on a CPU-cluster. In addition, even though the size
of the GRAM in a graphics card increases rapidly in newer mod-
els (for example, the latest NVIDIA graphics card — GeForce GTX
295 has 1.75G GRAM), not all the capacity of GRAM can be used to
store data arbitrarily. Shared memory and local memory are flex-
ible to use, however, their sizes are very limited in a block and
thus they cannot be used for storing data with large size. In gen-
eral, numerical solution of conservation laws will generate many
intermediate results (for example, ut+�t/2, F , c, w , etc.) during
the computation process, these results should be stored for subse-
quent steps in the process. Therefore, global memory was mainly
used in GPU-MHD.

After the maximum value of cmax in Eq. (18) is found, we can
obtain the �t by determining the Courant number (cfl). The se-
quential step is the calculation of Li (i = x, y, z). The implementa-
tion of Li includes two parts: update the fluid variables and update
the orthogonal magnetic fields. As an example, the process for cal-
culating Lx is shown in Fig. 4 where each block was implemented
with one or several CUDA kernels. The process for calculating L y

or Lz is almost the same as Lx except that the dimensional indexes
are different.

The first part of the Lx calculation process is fluidx . The fluid
variables will be updated along x. Algorithm 1 shows the steps
and GPU kernels of this process (the data of u and B are already
copied to device memory), all the steps are processed on all grid
points with CUDA kernels in parallel.

In this process, we have to calculate the magnetic fields of the
grid point (Eq. (19)) first because all the magnetic fields are de-
fined on the faces of the grid cell [35]. To update the fluid variables
of Lx , the main process, which includes one or even several CUDA
kernels, is to calculate the affect of the orthogonal magnetic fields
to the fluid variables of Eqs. (6), (9) and (10). One such main pro-
cess gives the flux of the �t/2 step. After two main processes of
flux calculation and the other difference calculations, the value of
the fluid — u is updated from ut to ut+�t in one Lx process.



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2139
Algorithm 1 Algorithm of fluidx , all equations and difference calculations are processed using CUDA kernels

1: load u, B and �t
2: memory allocation for the storage of the intermediate results: Btemp , utemp , fluxtemp , othertemp , (othertemp includes the storage of F , c, w , etc.)
3: Btemp ← results obtained by Eq. (19) with B , (B stored the magnetic field of the cell faces)
4: othertemp ← results obtained by Eqs. (6) and (9) with u
5: fluxtemp ← the flux of a half time step: difference calculation (“First-Order Upwind Scheme of Fluid” CUDA kernels in Fig. 4) obtained by Eq. (16) using othertemp
6: utemp ← calculate the intermediate result (ut+�t/2) using Eq. (16) with u and fluxtemp
7: othertemp ← results obtained by Eqs. (6) and (9) with utemp (the same algorithm and same CUDA kernels in Step 4)
8: fluxtemp ← the flux of another half time step: difference calculation (“Second-Order TVD Scheme of Fluid” CUDA kernels in Fig. 4) obtained by Eq. (17) and the limiter

(Eq. (14)) using othertemp
9: calculate the result of ut+�t with fluxtemp using Eq. (17) and save it back to u

10: free the storage of the intermediate results
11: (continue to the second part of Lx , update the orthogonal magnetic fields)
Fig. 5. Flux computation in GPU-MHD.

The second part of the Lx calculation process is to update the
orthogonal magnetic fields in the y-dimension (B y→x), and the z-
dimension (Bz→x) with the fluid along the x-dimension. The strat-
egy and implementation are similar to those in the first part but
with a different algorithm for the orthogonal magnetic fields.

In Algorithm 1, the calculations in steps (4) to (9) are the steps
for B y→x , and steps (11) to (16) are the steps for Bz→x . The steps
for B y→x and Bz→x are almost the same, and the only different
parts are the dimensional indexes of the difference calculations,
and the affected magnetic fields: B y and Bz . After the first part of
Lx the fluid ut is updated to ut+�t . This change of the fluid af-
fects the orthogonal magnetic fields. Therefore, the corresponding
change (flux) of orthogonal magnetic fields can be calculated with
the density and velocity of the updated fluid ut+�t . Then the or-
thogonal magnetic fields are also updated to Bt+�t

y and Bt+�t
z , and

also, these changes give effects to Bx .
After one process of Lx , both fluid and magnetic fields are up-

dated to t + �t with the affect of the flow in the x-dimension.
A sweeping operation sequence includes two Lx , L y , and Lz (see
Eq. (23)). So we actually obtain the updated fluid and magnetic
fields of t + 2�t after one sweeping operation sequence. Note that
the second Lx in the sequence is a reverse sweeping operation,
the order of fluidx , B y→x and Bz→x has to be reversed: B y→x and
Bz→x first, and fluidx second.

As we mentioned previously, numerical solution of conserva-
tion laws needs much memory storages because there are many
intermediate results generated during the computation process.
These intermediate results should be stored for the next calcu-
lation steps which need the information of the neighboring grid
points obtained in the previous calculation steps. Otherwise, we
have to perform many redundant processes in order to avoid the
asynchronous problem in parallel computation. This is due to the
processors on GPUs will not automatically start or stop working
synchronously. Without storing the intermediate results, it will be
hard to guarantee the values of the neighboring grid points up-
dated synchronously. With the purpose to minimizing the memory
usage, not only the calculation process of Lx is divided into sev-
eral steps (CUDA kernels), but also the intermediate results are
stored as little as possible. The processes dealing with the differ-
ence calculations are also divided into several steps to minimize
the storage of the intermediate results and to guarantee there is
no wrong result caused by asynchronous problem.

It should be realized that most of the processes in the three-
dimensional relaxing TVD scheme with the dimensional splitting
technique is similar. Pen et al. [35] swapped the data of x, y, and z-
dimensions while GPU-MHD used one-dimensional arrays. But the
similar swapping technique can be applied in our case with some
indexing operations. Instead of transposing or swapping the data,
we implemented each calculation part of the flux computation
with two sets of CUDA kernels: one set is the CUDA kernels for
calculating the relaxing TVD scheme (we call it TVD kernel here)
and the other set is the CUDA kernels actually called by Li opera-
tions (we call them Li kernels here). Indexing operations are con-
tained in all Li kernels. After the index is calculated, TVD kernels
are called and the indexes are passed to the TVD kernels, letting
the TVD kernels calculate the flux of the corresponding dimension.
Therefore, the difference among Lx , L y , and Lz is the dimensional
index. The flux computation of GPU-MHD is shown in Fig. 5.

The indexing operation swaps the target that will be updated
and the neighboring relationship will also be changed accordingly.
For example, the calculation that uses x + 1 as the neighboring
element in Lx will be changed to y + 1 in L y . As transposing the
data in a matrix needs more processing time, it is efficient and
flexible to extend the code to multidimensional case by dividing
the indexing operation and flux calculation.

As we mentioned in Section 4.1, the data is stored in 1D array,
the data accesses of Lx , L y , and Lz are depicted in Fig. 6. In Lx , the
data of (x, y, z), (x, y + 1, z), (x, y − 1, z), (x, y, z + 1), (x, y, z − 1)

are used to calculate and update the data of (x, y, z). The data of
(x + 1, y, z), (x + 1, y + 1, z), (x + 1, y − 1, z), (x + 1, y, z + 1), (x +
1, y, z−1) are used to calculate and update the data of (x+1, y, z),
and so on. Similarly, in L y , the data of (x, y, z), (x + 1, y, z), (x −
1, y, z), (x, y, z + 1), (x, y, z − 1) are used to calculate and update
the data of (x, y, z). The data of (x, y + 1, z), (x + 1, y + 1, z), (x −
1, y + 1, z), (x, y + 1, z + 1), (x, y + 1, z − 1) are used to calculate
and update the data of (x, y + 1, z), and so on. In Lz , the data of
(x, y, z), (x + 1, y, z), (x − 1, y, z), (x, y + 1, z), (x, y − 1, z) are used
to calculate and update the data of (x, y, z). The data of (x, y, z +
1), (x + 1, y, z + 1), (x − 1, y, z + 1), (x, y + 1, z + 1), (x, y − 1, z + 1)

are used to calculate and update the data of (x, y, z+1), and so on.
It seems that the data accesses of Lx and L y will slow down the
performance since these accesses are not in so-called “coalescing”
pattern. However, experimental results show that the computa-
tional times spending on calculating each dimensional component
such as fluidx and B y→x in Lx , L y , and Lz are very close in our cur-
rent arrangement (see Tables 4, 5, and 6 in Section 7). This is due
to the fact that the GT200 and the Fermi GPU are more flexible
to handle the data access that is not perfectly coalesced (see Sec-
tion 4.1). Thus we did not further perform the coalescing to make
these data accesses in optimal coalescing pattern.



2140 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Algorithm 2 Algorithm of (B y→x) and (Bz→x), all equations and difference calculations are processed using CUDA kernels

1: (after the processes of fluid, we obtain an updated u)
2: load u1 (density ρ), u2 (ρvx), B and �t
3: memory allocation for the intermediate results: Btemp , fluxtemp , vxtemp and vxface
4: vxtemp ← determine the fluid speed with the updated u1 and u2 in fluidx , with the difference calculated in the y-dimension
5: vxface ← Results obtained by Eq. (20)
6: fluxtemp ← the flux of a half time step: difference calculation of “flux of magnetic field in the y-dimension” (“First-Order Upwind Scheme of Magnetic Field” CUDA

kernels in Fig. 4) obtained by Eqs. (16) and (21))
7: Btemp ← calculate the intermediate result (ut+�t/2) by applying Eq. (16) to B y (not by applying Eq. (16) to u) with B y and fluxtemp
8: fluxtemp ← the flux of another half time step: difference calculation (“Second-Order TVD Scheme of Magnetic Field” CUDA kernels in Fig. 4) obtained by Eq. (16), the

limiter of Eqs. (14) and (21)
9: calculate the result of Bt+�t

x and Bt+�t
z with fluxtemp by applying Eq. (17) to B y , and save it back to B

10: (the following steps is similar to above steps but the affected orthogonal magnetic field is changed from y to z)
11: vxtemp ← determine the fluid speed with the updated u1 and u2 in fluidx , with the difference calculated in the z-dimension
12: vxface ← Results obtained with Eq. (20) using index of i, j, k + 1/2
13: fluxtemp ← the flux of a half time step: difference calculation of “flux of magnetic field in the z-dimension” (“First-Order Upwind Scheme of Magnetic Flied” CUDA

kernels in Fig. 4) obtained by Eqs. (16) and (21)
14: btemp ← calculate the intermediate result (ut+�t/2) by applying Eq. (16) to Bz (not by applying Eq. (16) to u) with Bz and fluxtemp
15: fluxtemp ← the flux of another half time step: difference calculation (“Second-Order TVD Scheme of Magnetic Flied” CUDA kernels in Fig. 4) obtained by Eq. (16), the

limiter of Eq. (14) and Equation (21)
16: calculate the results of Bt+�t

x and Bt+�t
z with fluxtemp by applying Eq. (17) to Bz , and save it back to B

17: free the storage of the intermediate results

Fig. 6. The data accesses of Lx , L y and Lz .
After the whole pipeline of Fig. 3 is completed, the MHD simu-
lation results will be stored in GRAM and these results are readily
to be further processed by the GPU for visualization or read back
to the CPU for other usage. Due to the data-parallel nature of
the algorithm and its high arithmetic intensity, we can expect our
GPU implementation to exhibit a relatively good performance on
GPUs.

5. Numerical tests

In this section, several numerical tests in one-dimensional (1D),
two-dimensional (2D), and three-dimensional (3D) cases for vali-
dation of GPU-MHD are given. Two graphics cards NVIDIA GeForce
GTX 295 and GTX 480 were used. GTX 295 has two GPUs in-
side but only one was used in these numerical tests. The results
shown in this section are computed with a single precision mode
in GPU-MHD on GTX 295. The difference between single precision
and double precision computation results will be discussed in Sec-
tion 6.
5.1. One-dimensional problems

5.1.1. Brio–Wu shock tube
1D Brio–Wu shock tube problem [3] which is an MHD version

of the Sod problem [44], consisting of a shock tube with two initial
equilibrium states as follows

Left side (x < 0.5){ vx

v y

vz

}
=

{0
0
0

}
(30)

{ Bx

B y

Bz

}
=

{0.75
1
0

}
(31)

ρ = 1, p = 1 (32)

Right side (x � 0.5){ vx

v y

}
=

{0
0

}
(33)
vz 0



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2141
Fig. 7. Results (part I) of Brio–Wu shock tube problem at t = 0.08L. The result computed with 512 grid points is shown with circles and the solid line shows the reference
high-resolution result of 4096 grid points.
{ Bx

B y

Bz

}
=

{0.75
−1
0

}
(34)

ρ = 0.125, p = 0.1 (35)

A constant value of γ = 2 was used and the problem was
solved for x ∈ [0,1] with 512 grid points. Numerical results are
presented at t = 0.08L in Figs. 7 and 8, which include the den-
sity, the pressure, the energy, the y- and z-magnetic field compo-
nents, and the x-, y- and z-velocity components. The results are in
agreement with those obtained by Brio and Wu [3] and Zachary et
al. [58].
5.1.2. MHD shock tube
The second 1D test is the MHD shock tube problem considered

in [6].
Left side (x < 0.5)

{ vx

v y

vz

}
=

{ 1.2
0.01
0.5

}
(36)

{ Bx

B y

Bz

}
=

{ 2
√

(4π)

3.6/
√

(4π)

2/
√

(4π)

}
(37)

ρ = 1.08, p = 0.95 (38)



2142 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Fig. 8. Results (part II) of Brio–Wu shock tube problem at t = 0.08L. The result computed with 512 grid points is shown with circles and the solid line shows the reference
high-resolution result of 4096 grid points.
Right side (x � 0.5){ vx

v y

vz

}
=

{0
0
0

}
(39)

{ Bx

B y

Bz

}
=

{ 2
√

(4π)

4/
√

(4π)

2/
√

(4π)

}
(40)

ρ = 1, p = 1 (41)

A constant value of γ = 5/3 was used and the problem was
solved for x ∈ [0,1] with 512 grid points. Numerical results are
presented at t = 0.2L in Figs. 9 and 10, which include the density,
the pressure, the energy, the y- and z-magnetic field components,
and the x-, y- and z-velocity components. The results are in agree-
ment with those obtained by [6] and [38].
5.2. Two-dimensional problems

5.2.1. Orszag–Tang problem
The first 2D test is Orszag–Tang problem [33], which is used to

study incompressible MHD turbulence. In our test, the boundary
conditions are periodic everywhere. The density ρ , pressure p, ini-
tial velocities (vx, v y, vz), and magnetic field (Bx, B y, Bz) are given
by

{ vx

v y

vz

}
=

{− sin(2π y)

sin(2πx)
0

}
(42)

{ Bx

B y

}
=

{−B0 sin(2π y)

B0 sin(4πx)

}
where B0 = 1/

√
4π (43)
Bz 0



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2143
Fig. 9. Results (part I) of MHD shock tube test at t = 0.2L. The result computed with 512 grid points is shown with circles and the solid line shows the reference high-
resolution result of 4096 grid points.
ρ = 25/(36π), p = 5/(12π)

γ = 5/3, (0 � x � 1) (0 � y � 1) (44)

The Orszag–Tang vertex test was performed in a two-dimensional
periodic box with 512 × 512 grid points. The results of the density
and gas pressure evolution of the Orszag–Tang problem at t = 0.5L
and t = 1.0L are shown in Fig. 11, where the complex pattern
of interacting waves is perfectly recovered. The results agree well
with those in Lee et al. [23].

5.2.2. Two-dimensional blast wave problem
The second 2D test is the MHD blast wave problem. The MHD

spherical blast wave problem of Zachary et al. [58] is initiated by
an over pressured region in the center of the domain. The result is
a strong outward moving spherical shock with rarefied fluid inside
the sphere. We followed the test suite [45] of Athena [49]. The
condition for 2D MHD blast wave problem is listed as follows [45]{ vx

v y

vz

}
=

{0
0
0

}
(45)

{ Bx

B y

Bz

}
=

{1/
√

2
1/

√
2

0

}
(46)

p =
{

10 inside the spherical region

0.1 outside the spherical region
(47)

ρ = 1, p = 5/(12π), γ = 5/3



2144 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Fig. 10. Results (part II) of MHD shock tube test at t = 0.2L. The result computed with 512 grid points is shown with circles and the solid line shows the reference
high-resolution result of 4096 grid points.
spherical region center = (0.5,0.5), r = 0.1

(0 � x � 1) (0 � y � 1) (48)

In Fig. 12, we present images of the density and gas pressure at
t = 0.2L computed with 512 × 512 grid points. The results are in
excellent agreement with those presented in [45].

5.2.3. MHD rotor problem
The third 2D test is the MHD rotor problem. The problem

was taken from [1]. It initiates a high density rotating disk with
radius r0 = 0.1 of fluid measured from the center point (x, y) =
(0.5,0.5). The ambient fluid outside of the spherical region of
r1 = 0.115 has low density and vx = v y = 0, and the fluid be-
tween the high density disk fluid and ambient fluid (r1 > r > r0,
where r = √
(x − 0.5)2 + (y − 0.5)2) has linear density and an-

gular speed profile with ρ = 1 + 9 f , vx = − f v0(y − 0.5)/r and
v y = − f v0(x−0.5)/r where f = (r1 −r)/(r1 −r0). Two initial value
sets of v0, p, Bx and γ provided in [1] and [53] were tested. The
initial condition for 2D MHD Rotor problem is listed as follows

spherical region center = (0.5,0.5), r0 = 0.1

r1 = 0.115, f = (r1 − r)/(r1 − r0)

(0 � x � 1) (0 � y � 1) (49)

r < r0{ vx

v y

}
=

{−v0(y − 0.5)/r0
v0(x − 0.5)/r0

}
(50)
vz 0



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2145
Fig. 11. Results of the density (top) and gas pressure (bottom) of the Orszag–Tang vortex test at t = 0.5L (left) and t = 1.0L (right) computed with 512 × 512 grid points.
r0 < r < r1{ vx

v y

vz

}
=

{− f v0(y − 0.5)/r
− f v0(x − 0.5)/r

0

}
(51)

r > r1{ vx

v y

vz

}
=

{0
0
0

}
(52)

ρ =
⎧⎨
⎩

10 r < r0

1 + 9 f r0 < r < r1

1 r > r1

(53)

First rotor problem:
v0 = 2, p = 1, γ = 1.4

tmax = 0.15,

{ Bx

B y

Bz

}
=

{5/
√

4π
0
0

}
(54)

Second rotor problem:

v0 = 1, p = 0.5, γ = 5/3

tmax = 0.295

{ Bx

B y

Bz

}
=

{2.5/
√

4π
0
0

}
(55)

In Fig. 13, we present images of the density, gas pressure of the
two rotor problems computed with 512 × 512 grid points. The
results are in excellent agreement with those presented in [1]
and [53].



2146 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Fig. 12. Results of the density (left) and gas pressure (right) of the 2D blast wave test at t = 0.2L, computed with 512 × 512 grid points.
5.3. Three-dimensional blast wave problem

The 3D version of MHD spherical blast wave problem was also
tested. The condition is listed as follows [45]

{ vx

v y

vz

}
=

{0
0
0

}
(56)

{ Bx

B y

Bz

}
=

{1/
√

3
1/

√
3

1/
√

3

}
(57)

p =
{

10 inside the spherical region

0.1 outside the spherical region
(58)

ρ = 1, γ = 5/3

spherical region center = (0.5,0.5,0.5), r = 0.1

(0 � x � 1) (0 � y � 1) (0 � z � 1) (59)

Figs. 14 and 15 show the results of 3D blast wave problem,
which include the density, gas pressure, and magnetic pressure at
t = 0.1L and t = 0.2L sliced along the x–y plane at z = 0.5. The
test was computed with 128 × 128 × 128 grid points. Due to the
scarcity of published 3D test results, we do not make direct con-
tact with results presented in the literature here. Considering only
the u and B , the memory requirement of 2563 MHD problem is
about 512 MB GRAM for single precision and 1024 MB GRAM for
double precision, respectively. If the storage of intermediate re-
sults such as Btemp , utemp , fluxtemp and F etc. (see Section 4.3)
are considered, the amount of memory requirement will be about
2.25 GB (single precision). As we mentioned in Section 4.3, not
all the capacity of GRAM can be used to store data arbitrarily.
As we said in the beginning of this section, there are actually
two GPUs inside the GTX 295 and the 1.75 GB GRAM is the to-
tal amount of the GRAM shared by two GPUs, so that only less
than 1.75/2 = 0.875 GB GRAM can be used. As a result, the test of
3D problem with 2563 resolution are not able to be provided on a
graphics card.
6. Accuracy evaluation

In MHD simulations, accuracy is always to be considered since
the error may increase fast and crash the simulation if low preci-
sion is used for computation. Scientific computations such as MHD
simulation mostly use double precision to reduce the computa-
tional errors. In this section, the results generated by GPU-MHD
using single precision and double precision modes are shown and
compared.

The difference between the results of double precision and sin-
gle precision computation of the 512×1×1 one-dimensional Brio–
Wu shock tube problem is shown in Fig. 16. Two curves are almost
the same but there are actually some differences with the error ly-
ing in the region of � ±10−6.

In 2D cases, the absolute difference between the results of dou-
ble precision and single precision computation of the MHD Rotor
test (t = 0.15L) and the Orszag–Tang vortex test (t = 0.5L and
t = 1.0L) are shown in Figs. 17 and 18, respectively. The double
precision computation results of both tests are also shown on the
left-hand side of these figures.

For the MHD Rotor test, even the resulting image (left in
Fig. 17) looks similar to the single precision resulting image (top-
left of Fig. 13), the large differences at the dense region can be
found. Experimental result shows that the maximum error is larger
than ±3.5 × 10−4.

Fig. 18 shows the absolute difference between the results of
double precision and single precision computation of the Orszag–
Tang test at t = 0.5L and t = 1.0L. As the simulation time in-
creases, the maximum error increases from about ±8 × 10−5 to
±0.03.

Figs. 19 and 20 show the resulting images of the simulation us-
ing double precision and the contours of the absolute differences
between the results of double precision and single precision com-
putation of 3D blast wave test with 1283 grid points at t = 0.1L
and t = 0.2L. As it is a high dimension computation in low resolu-
tion, the differences between them are clear. The number of grid
points having a higher difference value increases, and the error is
still less than 10−6. Small difference value makes the double preci-
sion resulting images (Figs. 19 and 20) looked similar to the single
precision resulting images (Figs. 14 and 15).



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2147
Fig. 13. Results of the density (top-left), gas pressure (top-right) of the first MHD rotor test at t = 0.15L, results of the density (bottom-left), gas pressure (bottom-right) of
the second MHD rotor test at t = 0.295L, both computed with 512 × 512 grid points.
An important point can be inferred from these experiments
that not only the grid points at the high density region has high
difference value, but also the number of grid points having high
difference values and the amount of the difference values are in-
creasing along with the increase of the simulation time. Higher
dimension is another factor in introducing noticeable differences
between the computational results with different precisions be-
cause higher dimension means a grid point has more neighbors
and more neighbors need more computation steps in one time
step. As a result the differences become more obvious. There-
fore, for a long-term simulation, double precision computation is
a highly desirable.
The original Fortran code [35] is a second-order accurate high-
resolution TVD MHD code. Empirically, as demonstrated by the
experiments reported in this section, we consider that the GPU-
MHD is sufficiently accurate to capture the forward and reverse
shocks as well as any other discontinuities such as contact discon-
tinuities which are important in space physics. As the GPU-MHD
is a dimensional-splitting based code, there are two major draw-
backs: (i) the code is unable to evolve the normal (to the sweep
direction) magnetic field during each sweep direction [12], and
(ii) splitting errors will generally be introduced due to the fact that
the linearized Jacobian flux matrices do not commute in most of
the nonlinear multidimensional problems [24].



2148 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Fig. 14. Results of the density (top-left), gas pressure (top-right) and magnetic pressure (bottom) of 3D blast wave test at t = 0.1L sliced along the x–y plane at z = 0.5 and
computed with 128 × 128 × 128 grid points.
7. Performance measurements

The performance measurements of the GPU and CPU imple-
mentations as well as the computation using double precision and
single precision are carried out in this section. Different num-
bers of grid points and different dimensions were used in the
performance tests. We run both GPU-MHD and Pen et al.’s FOR-
TRAN/CPU MHD code [37] to perform the simulations on a PC
with Intel Core i7 965 3.20 GHz CPU, 6G main memory, run-
ning Microsoft Windows XP 64-bit Professional operating system.
Two graphics cards were tested: NVIDIA GeForce GTX 295 with
1.75G video memory and GTX 480 (Fermi) with 1.5G video mem-
ory. The Fortran compiler and GPU development toolkit we used
are G95 Stable Version 0.92 and NVIDIA CUDA 3.2, respectively.
The GPU-MHD was designed for three-dimensional problems, thus
the dimensions are expressed in three-dimensional form in all fig-
ures shown in this section. For the 1D test, the 1D Brio–Wu shock
tube problem (see Section 5.1.1) was used. For the 2D test, the 2D
Orszag–Tang problem (see Section 5.2.1) was used. For the 3D test,
the 3D blast wave problem (see Section 5.3) was used.

Fig. 21 reports the comparison of the GPU-MHD and the FOR-
TRAN/CPU code of 1D test with different numbers of grid points
in single and double precisions. In the single precision mode, ba-
sically there is only about 10 times speedup (4096 × 1 × 1 case)



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2149
Fig. 15. Results of the density (top-left), gas pressure (top-right) and magnetic pressure (bottom) of 3D blast wave test at t = 0.2L sliced along the x–y plane at z = 0.5 and
computed with 128 × 128 × 128 grid points.
since the number of grid points is small. It should be realized
that the amount of speedup is increased as long as the resolu-
tion is increased but dropped when the resolution reaches 512.
It is because the “max threads per block” of the GTX 295 is
512, all the computations are handled within one block and a
very high processing speed can be archived. On the GTX 480,
there is about 80 times speedup (4096 × 1 × 1 case) and the
amount of speedup is increased linearly thanks to the improve-
ment of the floating point arithmetic in the GTX 480 [32] (the
new IEEE 754-2008 floating-point standard which provides the
fused multiply-add (FMA) instruction for both single (512 FMA
ops/clock) and double precision arithmetic (256 FMA ops/clock)).
In the double precision mode, around 10 times and 60 times
speedup (4096 × 1 × 1 case) is achieved on the GTX 295 and the
GTX 480, respectively.

Table 1 gives the comparison of the GPU-MHD using single pre-
cision and double precision of 1D test with different numbers of
grid points. On the GTX 295, a similar speed drop happened in
both the single and double precision modes, but it occurred at dif-
ferent resolutions: 512 in single precision and 256 in double pre-
cision. This is not strange and it is not difficult to understand since
the double precision has double the size of data to be handled by
the processors. Except for the special case of 512 resolution, the
processing speed in both modes are very closed to one another.



2150 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Fig. 16. Result of ρdouble − ρsingle (top), Edouble − Esingle (middle) and pdouble − psingle (bottom) of the 1D Brio–Wu shock tube problem at t = 0.08L with 512 grid points.



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2151
Fig. 17. Results of ρdouble (left) and |ρdouble − ρsingle| (right) of the MHD rotor problem at t = 0.15L with 5122 grid points.
On the GTX 480, the performance between single and double pre-
cision is quite close.

The comparison of the GPU-MHD and the FORTRAN/CPU code
of the 2D test with different numbers of grid points in single and
double precisions is presented in Fig. 22. In the 2D case, a sig-
nificant performance improvement is observed, especially when
the numbers of grid points are 5122 and 10242, respectively, a
speedup of around 150 and around 200 are achieved on the GTX
295. On the GTX 480, a speedup of around 320 and around 600
is achieved, respectively. This is due to the significant improve-
ment of the performance in double precision on the GTX 480 (with
double precision floating point capability of 256 FMA ops/clock) is
better than that of the GTX 295 (30 FMA ops/clock).

Table 2 presents the comparison of the GPU-MHD using single
precision and double precision of 2D test with different numbers
of grid points. The significant performance difference is notice-
able when the number of grid points is increased. However, it still
keeps a ratio increasing slowly from 1.118 to 1.6218 while the res-
olution increases from 1282 to 10242. The double/single precision
ratios on the GTX 480 vary between 1.2804 and 1.7300.

Fig. 23 shows the comparison of the GPU-MHD and the FOR-
TRAN/CPU code of the 3D test with different numbers of grid
points in single and double precisions. The performance of the
GPU-MHD is faster than the FORTRAN/CPU code about 60 times
and 84 times when the numbers of grid points are 643 and 1283

on the GTX 295, respectively. The corresponding speedups on the
GTX 480 are about 260 and 155, respectively.

Table 3 shows the comparison of the GPU-MHD using single
precision and double precision of the 3D test with different num-
bers of grid points. The ratio is 1.6020 when the number of grid
points is 643, and is 1.7389 when the number of grid points is
1283 on the GTX 295. The corresponding ratio on the GTX 480 are
1.3973 and 1.7133, respectively.

The performance tests show that when the number of grid
points of the test problems is small, such as those in the 1D case,
the GPU-MHD can give a significant performance improvement
over that of the single CPU case. When the number of grid points
increases, an obvious disparity of performance becomes clear, es-
pecially for the multidimensional cases (see Figs. 22 and 23). Com-
putation using double precision on GPUs prior to Fermi is known
to have a very low performance compared to the single precision.
However, in the performance comparison between single precision
and double precision modes in the GPU-MHD, the ratios of the
processing speed between two modes show that the GPU-MHD is
efficient enough in the double precision computations. The perfor-
mance results show that CUDA is an attractive parallel computing
environment for MHD simulations.

Tables 4, 5, and 6 show the performance comparisons between
the FORTRAN/CPU and the GPU-MHD of major calculations in sin-
gle precision at different resolutions of the 1D, 2D and 3D tests,
respectively. These tables provide the information of how the com-
putational effort spent on which step in the 1D, 2D, and 3D prob-
lems. From these tables we observe that the calculations of fluids
(fluidx , fluidy , and fluidz) spend most of the computational times
in all kinds of problems. Even though the data accesses of Lx and
L y are not coalesced (see Section 4.2), the computational times
spent on each part of Lx , L y , and Lz in the same problem are very
close. It shows that the GT200 and the Fermi architectures handle
the data accesses that are not perfectly coalesced quite well in our
study.

8. Visualization of the simulation results

There is a need to visualize the MHD simulation data, for exam-
ples, Daum [7] developed a toolbox called VisAn MHD in MATLAB
for MHD simulation data visualization and analysis. With the help
of GPUs, Stantchev et al. [47] used GPUs for computation and vi-
sualization of plasma turbulence. In GPU-MHD, using the parallel
computation power of GPUs and CUDA, the simulation results of
one time step can be computed in dozens or hundreds millisec-
onds. According to the efficiency of the GPU-MHD, near real-time
visualization is obtained for 1D and 2D problems. The motion or
attributes of the magnetic fluid can be computed and rendered on
the fly. So the changes of the magnetic fluid during the simulation
can be observed in real-time.

By adding the real-time visualization, the flow of the GPU-MHD,
Fig. 3 is extended as Fig. 24.



2152 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Fig. 18. Results of ρdouble (left) and |ρdouble − ρsingle| (right) of the Orszag–Tang problem at t = 0.5L (top) and t = 1.0L (bottom) with 5122 grid points.
The GPU-MHD provides different visualization methods for one-
dimensional, two-dimensional and three-dimensional problems.

To visualize one-dimensional problems for each time step, the
simulation results are copied to the CUDA global memory that
mapped to the Vertex Buffer Object (VBO) [57]. For all grid points,
one grid point is mapped to one vertex. The position of each
grid point is mapped as the x-position of the vertex and the se-
lected physical value (ρ , p, etc.) is mapped as the y-position of
the vertex. Then a curve of these vertices is drawn. Since the
VBO is mapped to CUDA global memory and the simulation re-
sults are stored in the GRAM, the copying and mapping operations
are fast. Experimental result shows that GPU-MHD with real-time
visualization can achieve 60 frame per second (FPS) in single pre-
cision mode and 30 FPS in double precision mode on the GTX 295.
On the GTX 480, around 60 FPS in both single and double preci-
sions can be achieved. Fig. 25 shows two example images of 1D
visualizations using the GPU-MHD.

The operational flow of visualization of 2D problems is similar
to that in the 1D visualization. However, instead of Vertex Buffer
Object (VBO), Pixel Buffer Object (PBO) [57] is used. For each time
step, the simulation results are copied to the CUDA global memory
that are then mapped to the PBO. For all grid points, one grid point
is mapped to one pixel. The x- and y-position of each grid point
are mapped as the corresponding x-position and the y-position of
the vertex and the selected physical value (ρ , p, etc.) is mapped
as the color of the pixel to form a color image. To render this
color image, a transfer function is set to map the physical value
to the color of the pixel and then the resulting image is drawn.
Similar to VBO, PBO is also mapped to the CUDA global memory
and the simulation results are stored in the GRAM, so the copy-



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2153
Fig. 19. Results of pdouble (top-left), ρdouble (bottom-left) and |pdouble − psingle| (top-right), |ρdouble −ρsingle| (bottom-right) of the 3D blast wave problem at t = 0.1L with 1283

grid points.
ing and mapping operations are also fast and do not affect too
much of the performance. Although the number of grid points in
the 2D problem is much larger than that in the one-dimension
problem, the FPS still reaches 10 in the single precision mode and
6 in the double precision mode on the GTX 295 when the num-
ber of grid points is 5122, still giving acceptable performance to
the user. On the GTX 480, 22 FPS in single precision and 17 FPS in
double precision are achieved and thus interactive rates are possi-
ble. Fig. 26 shows two example images of 2D visualizations using
GPU-MHD.

However, visualization of 3D problem is different to that in the
1D and 2D problems. GPU-based volume visualization method [15]
and texture memory (or video memory) are used. Unfortunately,
the current version (Version 3.2) of CUDA does not provide the
feature to copy the data from the CUDA global memory to texture
memory directly, even though both of them are in the GRAM. On
the other hand, texture memory is readable but is not rewritable
in CUDA. So the simulation results have to be copied to the main
memory first, and then be copied to texture memory. In addition,
the number of grid points is usually large compared to that of
the 2D problems and volume visualization techniques are some-
what time-consuming. As a result, on the GTX 295, GPU-MHD only
achieves 2 FPS in single precision mode and 1 FPS in double pre-
cision mode when the number of grid points is 1283, and it is far
from real-time. Nevertheless, we still obtain 10 FPS (single preci-
sion mode) and 6 FPS (double precision mode) for performing the
simulation of problems with a resolution of 643 and about 20 FPS
(single and double precision modes) for problems with a resolu-



2154 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Fig. 20. Result of pdouble (top-left), ρdouble (bottom-left) and |pdouble − psingle| (top-right), |ρdouble − ρsingle| (bottom-right) of the 3D blast wave problem at t = 0.2L with 1283

grid points.
tion of 323. On GTX 480, we can obtain 60 FPS for both single and
double precision for 323 grid points, 20 FPS (single) and 16 FPS
(double) for 643 grid points, and 6.1 FPS (single) and 3.6 FPS (dou-
ble) for 1283 grid points. Fig. 27 shows two example images of 2D
visualizations using GPU-MHD.

9. Conclusion and future work

In this paper we present, to the best of the author’s knowl-
edge, the first implementation of MHD simulations entirely on
GPUs with CUDA, named GPU-MHD, to accelerate the simulation
process. The aim of this paper is to present a GPU implementation
in detail, demonstrating how a TVD based MHD simulations can
be implemented efficiently for NVIDIA GPUs with CUDA. A series
of numerical tests have been performed to validate the correctness
of our code. Accuracy evaluation by comparing single and double
precision computation results is also given, indicating that double
precision support on GPUs is a necessity for long-term MHD simu-
lation. Performance measurements of both single and double preci-
sion modes of GPU-MHD are conducted on the GT200 architecture
(GTX 295) and the Fermi architecture (GTX 480). These measure-
ments show that our GPU-based implementation achieves between
one and two orders of magnitude improvement depending on the
graphics card used, the problem size, and the precision when com-
paring to the original serial CPU MHD implementation. In order to
provide the user better understanding of the problems being inves-
tigated during the simulation process, we have extended GPU-MHD
to support visualization of the simulation results. With GPU-MHD,



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2155
Fig. 21. The speedup of the 1D test using the GPU-MHD (left: single precision; right: double precision), compared with the FORTRAN/CPU code at different resolutions.

Table 1
The performance results of the 1D test between single precision and double precision of GPU-MHD at different resolutions.

Number of grid points GPU Double precision
(ms/step)

Single precision
(ms/step)

Ratio

128 × 1 × 1 GTX 295 3.9 3.6 1.0833
GTX 480 2.26 2.24 1.0089

256 × 1 × 1 GTX 295 4.5 4.0 1.1250
GTX 480 2.35 2.29 1.0262

512 × 1 × 1 GTX 295 29.5 4.5 6.5555
GTX 480 3.21 2.95 1.0881

1024 × 1 × 1 GTX 295 31.0 30.0 1.0333
GTX 480 3.25 3.03 1.0726

2048 × 1 × 1 GTX 295 33.0 32.2 1.0248
GTX 480 3.82 3.43 1.1137

4096 × 1 × 1 GTX 295 39.1 36.4 1.0742
GTX 480 5.95 4.31 1.3805

Fig. 22. The speedup of the 2D test using the GPU-MHD (left: single precision; right: double precision), compared with the FORTRAN/CPU code at different resolutions.
the whole MHD simulation and visualization process can be per-
formed entirely on GPUs.

There are two possible future research directions in our fu-
ture work, firstly, we wish to extend GPU-MHD for multiple GPUs
and GPU cluster [42] to fully exploit the power of GPUs. Sec-
ondly, we will investigate implementing other recent high-order
Godunov MHD algorithms such as [23] and [50] on GPUs. These
GPU-based algorithms will serve as the base of our GPU frame-
work for simulating large-scale MHD problems in space weather
modeling.



2156 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Table 2
The performance results of the 2D test between single precision and double precision of GPU-MHD at different resolutions.

Number of grid points GPU Double precision
(ms/step)

Single precision
(ms/step)

Ratio

128 × 128 × 1 GTX 295 35.8 32.2 1.1118
GTX 480 7.01 5.36 1.3078

256 × 256 × 1 GTX 295 57.3 44.8 1.2790
GTX 480 21.59 12.48 1.7300

512 × 512 × 1 GTX 295 142.3 94.0 1.5138
GTX 480 56.26 43.94 1.2804

1024 × 1024 × 1 GTX 295 478.6 295.1 1.6218
GTX 480 144.48 96.43 1.4983

Fig. 23. The speedup of the 3D test using the GPU-MHD (left: single precision; right: double precision), compared with the FORTRAN/CPU code at different resolutions.

Table 3
The performance results of the 3D test between single precision and double precision of GPU-MHD at different resolutions.

Number of grid points GPU Double precision
(ms/step)

Single precision
(ms/step)

Ratio

32 × 32 × 32 GTX 295 44.6 36.6 1.2186
GTX 480 12.03 7.41 1.6235

64 × 64 × 64 GTX 295 145.3 90.7 1.6020
GTX 480 60.18 43.07 1.3973

128 × 128 × 128 GTX 295 880.6 506.4 1.7389
GTX 480 276.40 161.33 1.7133

Table 4
Performance comparison (ms/step) between the FORTRAN/CPU and the GPU-MHD of major calculations in single precision at different resolutions of the 1D test.

Number of grid points Operations FORTRAN/CPU GTX 295 GTX 480

512 × 1 × 1 CFL 0.18 0.14 0.28
fluidx 1.07 0.93 0.61
Bx→y and Bx→z 0.36 0.18 0.11
fluidy 5.85 0.40 0.27
B y→x and B y→z 3.80 0.19 0.10
fluidz 5.88 0.40 0.27
Bz→x and Bz→y 3.75 0.18 0.10
Transposition 1.96 – –

1024 × 1 × 1 CFL 0.44 0.61 0.24
fluidx 2.16 4.90 0.58
Bx→y and Bx→z 0.53 0.69 0.10
fluidy 11.81 4.09 0.26
B y→x and B y→z 7.57 0.66 0.10
fluidz 11.70 4.03 0.26
Bz→x and Bz→y 7.55 0.80 0.10
Transposition 4.10 – –

2048 × 1 × 1 CFL 0.90 0.62 0.24
fluidx 4.31 6.09 0.77



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2157
Table 4 (Continued)

Number of grid points Operations FORTRAN/CPU GTX 295 GTX 480

Bx→y and Bx→z 1.07 0.67 0.10
fluidy 23.31 4.10 0.26
B y→x and B y→z 15.09 0.67 0.10
fluidz 23.26 4.04 0.26
Bz→x and Bz→y 14.96 0.67 0.10
Transposition 8.22 – –

4096 × 1 × 1 CFL 1.24 0.63 0.28
fluidx 8.92 7.93 1.19
Bx→y and Bx→z 1.59 0.66 0.10
fluidy 46.83 4.01 0.26
B y→x and B y→z 30.41 0.67 0.10
fluidz 46.74 3.98 0.26
Bz→x and Bz→y 30.15 0.67 0.10
Transposition 16.50 – –

Table 5
Performance comparison (ms/step) between the FORTRAN/CPU and the GPU-MHD of major calculations in single precision at different resolutions of the 2D test.

Number of grid points Operations FORTRAN/CPU GTX 295 GTX 480

128 × 128 × 1 CFL 9.44 0.69 0.30
fluidx 33.30 4.43 0.79
Bx→y and Bx→z 8.54 0.77 0.11
fluidy 33.28 4.48 0.83
B y→x and B y→z 7.15 0.83 0.12
fluidz 179.00 4.37 0.57
Bz→x and Bz→y 116.17 0.78 0.11
Transposition 105.22 – –

256 × 256 × 1 CFL 28.26 1.01 0.56
fluidx 136.87 6.05 1.73
Bx→y and Bx→z 33.41 1.42 0.37
fluidy 133.76 6.32 1.77
B y→x and B y→z 32.61 1.41 0.41
fluidz 713.28 5.94 1.33
Bz→x and Bz→y 467.13 1.24 0.36
Transposition 406.36 – –

512 × 512 × 1 CFL 108.00 1.90 1.46
fluidx 513.75 12.21 6.11
Bx→y and Bx→z 121.67 2.86 1.18
fluidy 503.29 12.73 6.12
B y→x and B y→z 120.46 3.53 1.33
fluidz 2747.38 11.78 5.33
Bz→x and Bz→y 1796.88 2.94 1.16
Transposition 1554.66 – –

1024 × 1024 × 1 CFL 459.22 5.28 3.18
fluidx 2113.20 36.24 12.80
Bx→y and Bx→z 532.89 9.37 3.08
fluidy 2078.98 40.44 13.27
B y→x and B y→z 534.93 11.89 3.70
fluidz 11611.11 37.14 10.72
Bz→x and Bz→y 7538.00 9.70 3.05
Transposition 6537.16 – –

Table 6
Performance comparison (ms/step) between the FORTRAN/CPU and the GPU-MHD of major calculations in single precision at different resolutions of the 3D test.

Number of grid points Operations FORTRAN/CPU GTX 295 GTX 480

32 × 32 × 32 CFL 14.30 0.78 0.35
fluidx 76.74 4.90 1.00
Bx→y and Bx→z 23.09 0.97 0.16
fluidy 74.35 4.95 0.99
B y→x and B y→z 22.09 1.04 0.18
fluidz 74.02 4.97 1.04
Bz→x and Bz→y 22.44 1.00 0.17
Transposition 125.12 – –

64 × 64 × 64 CFL 111.92 1.90 1.43
fluidx 545.58 11.82 5.57
Bx→y and Bx→z 144.58 2.94 1.18
fluidy 533.83 12.11 5.59
B y→x and B y→z 143.21 3.61 1.31

(continued on next page)



2158 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Table 6 (Continued)

Number of grid points Operations FORTRAN/CPU GTX 295 GTX 480

fluidz 537.75 12.37 5.90
Bz→x and Bz→y 142.58 3.25 1.27
Transposition 963.6 – –

128 × 128 × 128 CFL 871.00 10.98 5.50
fluidx 4231.83 63.83 19.64
Bx→y and Bx→z 1047.42 17.30 5.47
fluidy 4110.67 65.29 18.63
B y→x and B y→z 1029.96 22.42 6.45
fluidz 4096.88 70.65 21.56
Bz→x and Bz→y 1031.92 19.52 6.18
Transposition 7686.58 – –

Fig. 24. The flow chat of the extended GPU-MHD.



H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160 2159
Fig. 25. 1D real-time visualizations of the density (ρ) of the Brio–Wu shock tube problem with 512 grid points using GPU-MHD.

Fig. 26. 2D visualizations of the density (ρ) of the Orszag–Tang vortex problem with 5122 grid points using GPU-MHD.

Fig. 27. 3D visualizations of the density (E) of the 3D blast wave problem with 1283 grid points using GPU-MHD.



2160 H.-C. Wong et al. / Computer Physics Communications 182 (2011) 2132–2160
Acknowledgements

This work is supported by the Science and Technology De-
velopment Fund of Macao SAR (03/2008/A1) and the National
High-Technology Research and Development Program of China
(2010AA122205). Xueshang Feng is supported by the National
Natural Science Foundation of China (40874091 and 40890162).
The authors would like to thank Dr. Ue-Li Pen and Bijia Pang at
the Canadian Institute for Theoretical Astrophysics, University of
Toronto for providing the FORTRAN MHD code. Thanks also to Pro-
fessor Ah Chung Tsoi and Dr. Yuet Ming Lam for their suggestions
on the revision of the paper. Special thanks to anonymous review-
ers for their constructive and valuable comments that helped us to
improve the paper.

References

[1] D.S. Balsara, D.S. Spicer, A staggered mesh algorithm using high order Godunov
fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simula-
tions, J. Comput. Phys. 149 (1999) 270–292.

[2] R.G. Belleman, J. Bédorf, S.F. Portegies Zwart, High performance direct gravita-
tional N-body simulations on graphics processing units II: an implementation
in CUDA, New Astronomy 13 (2008) 103–112.

[3] M. Brio, C.C. Wu, An upwind differencing scheme for the equations of ideal
magnetohydrodynamics, J. Comput. Phys. 75 (1988) 400–422.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, K. Skadron, A performance
study of general-purpose applications on graphics processors using CUDA, J.
Parallel Distrib. Comput. 68 (2008) 1370–1380.

[5] A. Ciardi, S. Lebedev, A. Frank, E. Blackman, D. Ampleford, C. Jennings, J. Chit-
tenden, T. Lery, S. Bland, S. Bott, G. Hall, J. Rapley, F. Vidal, A. Marocchino, 3D
MHD simulations of laboratory plasma jets, Astrophysics and Space Science 307
(2007) 17–22.

[6] W. Dai, P.R. Woodward, An approximate Riemann solver for ideal magnetohy-
drodynamics, J. Comput. Phys. 111 (1994) 354–372.

[7] P. Daum, VisAn MHD: a toolbox in Matlab for MHD computer model data vi-
sualization and analysis, Ann. Geophys. 25 (2007) 779–784.

[8] M. Dryer, Multi-dimensional MHD simulation of solar-generated disturbances:
space weather forecasting of geomagnetic storms, AIAA J. 36 (1998) 365–370.

[9] M. Dryer, Space weather simulations in 3D MHD from the Sun to Earth and be-
yond to 100 AU: a modeler’s perspective of the present state of the art (Invited
Review), Asia J. of Physics 16 (2007) 97–121.

[10] C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flow: a con-
strained transport method, Astrophys. J. 332 (1988) 659–677.

[11] X. Feng, Y. Zhou, S.T. Wu, A novel numerical implementation for solar wind
modeling by the modified conservation element/solution element method, As-
trophys. J. 655 (2007) 1110–1126.

[12] T.A. Gardiner, J.M. Stone, An unsplit Godunov method for ideal MHD via con-
strained transport, J. Comput. Phys. 205 (2005) 509–539.

[13] E. Gaburov, S. Harfst, S.P. Zwart, SAPPORO: a way to turn your graphics cards
into a GRAPE-6, New Astronomy 14 (2009) 630–637.

[14] J.P. Goedbloed, S. Poedts, Principles of Magnetohydrodynamics: With Appli-
cations to Laboratory and Astrophysical Plasmas, Cambridge University Press,
2004.

[15] M. Hadwiger, J.M. Kniss, C. Rezk-Salama, D. Weiskopf, K. Engel, Real-Time Vol-
ume Graphics, A K Peters, 2006.

[16] J.C. Hayes, M.L. Norman, R.A. Fiedler, J.O. Bordner, P.S. Li, S.E. Clark, A. Ud-
Doula, M.-M.M. Low, Simulating radiating and magnetized flows in multiple
dimensions with ZEUS-MP, Astrophys. J. Supp. 165 (2006) 188–228.

[17] Z. Huang, C. Wang, Y. Hu, X. Guo, Parallel implementation of 3D global MHD
simulations for Earth’s magnetosphere, Comput. Math. Appl. 55 (2008) 419–
425.

[18] S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws in arbi-
trary space dimensions, Commun. Pure Appl. Math. 48 (1995) 235–276.

[19] R. Käppeli, S.C. Whitehouse, S. Scheidegger, U.-L. Pen, M. Liebendörfer, FISH: a
3D parallel MHD code for astrophysical applications, arXiv:0910.2854v1, 2009.

[20] D.B. Kirk, W.W. Hwu, Programming Massively Parallel Processors, Addison–
Wesley, 2010.

[21] A.G. Kulikovskii, N.V. Pogorelov, A.Yu. Semenov, Mathematical Aspects of Nu-
merical Solution of Hyperbolic Systems, CRC Press, 2001.

[22] D. Lee, A.E. Deane, A parallel unsplit staggered mesh algorithm for magnetohy-
drodynamics, in: A. Deane, et al. (Eds.), Parallel Computational Fluid Dynamics
— Theory and Applications, Elsevier, 2006, pp. 243–250.

[23] D. Lee, A.E. Deane, An unsplit staggered mesh scheme for multidimensional
magnetohydrodynamics, J. Comput. Phys. 228 (2009) 952–975.

[24] R.J. LeVeque, Numerical Methods for Conservation Laws, second edition,
Birkhauser, 1992.
[25] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Uni-
versity Press, 2002.

[26] S. Li, H. Li, A novel approach of divergence-free reconstruction for adaptive
mesh refinement, J. Comput. Phys. 199 (2004) 1–15.

[27] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, NVIDIA Tesla: a unified graph-
ics and computing architecture, IEEE Micro 28 (2008) 39–55.

[28] W.R. Mark, R.S. Glanville, K. Akeley, M.J. Kilgard, Cg: a system for programming
graphics hardware in a C-like language, ACM Trans. Graph. 22 (2003) 896–907.

[29] P.M. Meijer, S. Poedts, J.P. Goedbloed, Parallel magnetohydrodynamics on the
Cray T3D, Future Generation Computer Systems 12 (1996) 307–323.

[30] NVIDIA Corporation, NVIDIA CUDA compute unified device architecture pro-
gramming Guide 3.2, Oct. 2010, http://www.nvidia.com/object/cuda_develop.
html.

[31] NVIDIA Corporation, CUDA C programming best practices guides 3.2, August
2010, http://www.nvidia.com/object/cuda_develop.html.

[32] NVIDIA Corporation, NVIDIA’s next generation CUDA compute architecture:
Fermi, Whitepaper, 2009, http://www.nvidia.com/object/cuda_develop.html.

[33] A. Orszag, C.M. Tang, Small-scale structure of two-dimensional magneto-
hydrodynamics turbulence, J. Fluid Mech. 90 (1979) 129–143.

[34] B. Pang, U.-L. Pen, E.T. Vishniac, Fast magnetic reconnection in three-
dimensional magnetohydrodynamics simulations, Physics of Plasmas 17 (2010)
102302.

[35] U.-L. Pen, P. Arras, S. Wong, A free, fast, simple and efficient TVD MHD code,
Astrophys. J. Supp. 149 (2003) 447–455.

[36] U.-L. Pen, C.D. Matzner, S. Wong, The fate of nonradiative magnetized accretion
flows: Magnetically frustrated convection, Astrophys. J. 596 (2003) L207–L210.

[37] U.-L. Pen, et al., MHD code: http://www.cita.utoronto.ca/~pen/MHD/.
[38] D. Ryu, T.W. Jones, Numerical magnetohydrodynamics in astrophysics: algo-

rithm and tests for one-dimensional flow, Astrophys. J. 442 (1995) 228–258.
[39] J. Sainio, CUDAEASY — a GPU accelerated cosmological lattice program, Com-

put. Phys. Commun. 181 (2010) 906–912.
[40] J. Sanders, E. Kandrot, CUDA by Example, Addison–Wesley, 2011.
[41] O. Schenk, M. Christen, H. Burkhart, Algorithmic performance studies on graph-

ics processing units, J. Parallel Distrib. Comput. 68 (2008) 1360–1369.
[42] H.-Y. Schive, C.-H. Chien, S.-K. Wong, Y.-C. Tsai, T. Chiueh, Graphic-card cluster

for astrophysics (GraCCA) — performance tests, New Astronomy 13 (2008) 418–
435.

[43] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, P. Hanra-
han, Larrabee: a many-core x86 architecture for visual computing, ACM Trans.
Graph. 27 (2008), Article 18.

[44] G. Sod, A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws, J. Comput. Phys. 27 (1978) 1–31.

[45] Spherical blast wave test page of Athena3D test suite: http://www.astro.
virginia.edu/VITA/ATHENA/blast.html.

[46] G. Stantchev, W. Dorland, N. Gumerov, Fast parallel particle-to-grid interpola-
tion for plasma PIC simulations, J. Parallel Distrib. Comput. 68 (2008) 1339–
1349.

[47] G. Stantchev, D. Juba, W. Dorland, A. Varshney, Using graphics processors for
high-performance computation and visualization of plasma turbulence, Com-
puting in Science and Engineering 11 (2009) 52–59.

[48] J. Stone, T.A. Gardiner, Recent progress in astrophysical MHD, Comput. Phys.
Commun. 177 (2007) 257–259.

[49] J. Stone, T.A. Gardiner, P. Teuben, J.F. Hawley, J.B. Simon, Athena a new code for
astrophysical MHD, Astrophys. J. Supp. 178 (2008) 137–177.

[50] J. Stone, T. Gardiner, A simple unsplit Godunov method for multidimensional
MHD, New Astronomy 14 (2009) 139–148.

[51] G. Strang, On the construction and comparison of difference schemes, SIAM J.
Numer. Anal. 5 (1968) 506–517.

[52] G. Tóth, D. Odstrčil, Comparison of some flux corrected transport and total
variation diminishing numerical schemes for hydrodynamic and magnetohy-
drodynamic problems, J. Comput. Phys. 128 (1996) 82–100.

[53] G. Tóth, The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics
codes, J. Comput. Phys. 161 (2000) 605–656.

[54] H. Trac, U.-L. Pen, A primer on Eulerian computational fluid dynamics for as-
trophysics, Publications of the Astronomical Society of the Pacific 115 (2003)
303–321.

[55] B. van Leer, Towards the ultimate conservative difference scheme II. Mono-
tonicity and conservation combined in a second order scheme, J. Comput.
Phys. 14 (1974) 361–370.

[56] B. van Leer, Towards the ultimate conservative difference scheme V. A second-
order sequel to Godunov’s method, J. Comput. Phys. 32 (1979) 101–136.

[57] R.S. Wright Jr., B. Lipchak, N. Haemel, OpenGL Superbible: Comprehensive Tu-
torial and Reference, fourth edition, Addison–Wesley, 2007.

[58] A. Zachary, A. Malagoli, P. Colella, A higher-order Godunov method for mul-
tidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput. 15 (1994)
263–284.

[59] U. Ziegler, The NIRVANA code: parallel computational MHD with adaptive mesh
refinement, Comput. Phys. Commun. 179 (2008) 227–244.

http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://www.cita.utoronto.ca/~pen/MHD/
http://www.astro.virginia.edu/VITA/ATHENA/blast.html
http://www.astro.virginia.edu/VITA/ATHENA/blast.html

	Efﬁcient magnetohydrodynamic simulations on graphics processing units with CUDA
	1 Introduction
	2 A brief description of the CUDA
	3 Numerical scheme
	4 GPU implementation
	4.1 Memory arrangement
	4.2 Program ﬂow
	4.3 Sweeping operations

	5 Numerical tests
	5.1 One-dimensional problems
	5.1.1 Brio-Wu shock tube
	5.1.2 MHD shock tube

	5.2 Two-dimensional problems
	5.2.1 Orszag-Tang problem
	5.2.2 Two-dimensional blast wave problem
	5.2.3 MHD rotor problem

	5.3 Three-dimensional blast wave problem

	6 Accuracy evaluation
	7 Performance measurements
	8 Visualization of the simulation results
	9 Conclusion and future work
	Acknowledgements
	References


