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Abstract The objective of this paper is to present new extensions of the space – time con-
servation element and solution element (CESE) method for simulations of magnetohydro-
dynamic (MHD) problems in general curvilinear coordinates by using an adaptive mesh
refinement (AMR) grid system. By transforming the governing MHD equations from the
physical space (x, y, z) to the computational space (ξ, η, ζ ) while retaining the form of
conservation, the CESE method is established for MHD in the curvilinear coordinates. Uti-
lizing the parallel AMR package PARAMESH, we present the first implementation of ap-
plying the AMR CESE method for MHD (AMR-CESE-MHD) in both Cartesian and curvi-
linear coordinates. To show the validity and capabilities of the AMR-CESE-MHD code,
a suite of numerical tests in two and three dimensions including ideal MHD and resis-
tive MHD are carried out, with two of them in both Cartesian and curvilinear coordinates.
Numerical tests show that our results are highly consistent with those obtained previously
by other authors, and the results under both coordinate systems confirm each other very
well.
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1. Introduction

The space – time conservation element and solution element (CESE) method, developed
originally by Chang and his co-workers (Chang, 1995; Chang, Wang, and Chow, 1999;
Wang and Chang, 1999; Yu et al., 1998; Zhang, Yu, and Chang, 2002), is a new method in
high-resolution computational fluid dynamics for solving linear and nonlinear convection-
diffusion equations in one, two, and three dimensions. Many advantages have been seen
from its applications. Unlike traditional numerical methods, the key principle of the CESE
method is to treat space and time as one entity in calculating flux balance. In the CESE
method, the first-order spatial derivatives are also considered as variables to be solved. By
designing the solution element (SE) and conservation element (CE), the CESE method al-
lows the physical parameters to have smooth profiles inside an SE, while between SEs or in
CEs, they may be discontinuous. Thus, the CESE method can capture sharp discontinuity
within a few grid points. In addition, the introduced numerical damping effect in this method
is controllable.

The CESE method has been used to study flows with moving and steady shocks, acoustic
waves, complex vertical flows, detonations, shock/acoustic/vortex interactions, dam-break
flows, etc.; the reader is referred to the above-cited references. Recently, the CESE method
has been extended to the field of magnetohydrodynamics (MHD) to study the shock tube
MHD problem, the smooth Alfvén wave problem, and the well-known Orszag and Tang’s
MHD vortex problem (Zhang et al., 2006). Feng, Hu, and Wei (2006) and Hu and Feng
(2006) applied the CESE method to 2.5D resistive MHD equations in Cartesian coordinates,
with the purpose of studying the magnetic reconnection process. They then successfully
developed a solar wind model (the solar-interplanetary CESE model, also called the SIP-
CESE model) using the CESE method on unstructured pentahedron mesh (Feng, Zhou, and
Wu, 2007). In all these former studies, the numerical computations give favorable results,
but the CESE method has a much simpler logic and operational technique. Furthermore,
without any special treatment, the method can control the numerical error caused by ∇ · B
(divergence of magnetic field) within a tolerable level (Zhang et al., 2006; Feng, Hu, and
Wei, 2006; Feng, Zhou, and Wu, 2007), which is an attractive advantage over other finite
volume methods for MHD.

Since the pioneering work by Berger and Colella (1989), the technique of adaptive mesh
refinement (AMR) has been developing rapidly in computational fluid dynamics and is be-
coming a standard tool for treating problems with multi-orders of spatial or temporal scales.
By automatically adapting the computational mesh to the solution of the governing partial
differential equations (PDEs), methods based on AMR can assign more mesh points for
regions demanding high resolution (e.g., high gradient regions) and at the same time, give
fewer mesh points to other less interesting regions (low gradient regions), thereby provid-
ing the required spatial resolution while minimizing memory requirements and CPU time.
However, implementing a parallel-AMR approach in a computational code implies a con-
siderable undertaking. To overcome this hurdle, a number of AMR software infrastructures
have been developed that support the parallel implementation of PDEs. These include Am-
rLib/BoxLib (Rendleman et al., 2000), Chombo (Colella et al., 2007), DAGH (Parashar
and Browne, 2007), GrACE (Parashar, 2007), PARAMESH (MacNeice et al., 2000), and
SAMRAI (Garaizar, Hornung, and Kohn, 1999).

In recent years, AMR techniques have been widely used in an increasing number of sim-
ulations of MHD problems in plasma physics and astrophysics, especially MHD problems
with disparate spatial and temporal scales (Powell et al., 1999; Ziegler, 1998; Linde, 2002;
Stone et al., 2008). The code FLASH (Linde, 2002) and BATSRUS (Powell et al., 1999;
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Tóth et al., 2005, 2006) developed for astrophysics and space weather modeling (e.g., com-
putation of the solar wind, simulation of solar eruptions such as magnetic reconnection
and coronal mass ejections (CMEs), and modeling of their effects on the Earth’s magne-
tosphere) are two representative implementations of AMR techniques in MHD simulation.
In the MHD simulations performed on AMR grids in recent years, the finite volume schemes
of Godunov’s type are the dominant numerical method of discretization, while the advan-
tages of the CESE method on AMR grids have never been observed for the MHD simula-
tions.

In this work, our primary goal is to realize the CESE method on AMR grids for MHD
simulations with the help of the PARAMESH toolkit. PARAMESH, a package of Fortran
90 subroutines, is designed to provide an application developer with an easy route to extend
an existing serial code which uses a logically Cartesian structured mesh into a parallel code
with AMR (MacNeice et al., 2000). The package builds a hierarchy of sub-grids to cover
the computational domain, with spatial resolution varying to satisfy the demands of the ap-
plication. These sub-grid blocks form the nodes of a tree data structure (quad-tree in two
dimensions or oct-tree in three dimensions). Each grid block has a logically Cartesian mesh.
The adaptation of the solution is realized by dividing (refining) and coarsening appropriate
blocks. Due to the high performance and usability of this publicly available toolkit, it has
been utilized for the management of the AMR grid system and parallelization. The same
package is used by the code FLASH and ATHENA in the astrophysics community (MacNe-
ice et al., 2000; Olson and MacNeice, 2005; Olson, 2006), and is available on the website
http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr.html.

Our underlying motivations are as follows. In modeling solar-terrestrial physics prob-
lems, such as the solar wind, solar flares, coronal mass ejections, and the global evolution
of magnetic structures, it is inevitable to use the spherical shell domain to describe the
computational domain. In a global simulation such as the three-dimensional propagation
of coronal mass ejections from the Sun to the Earth, one has to deal with the spherical
boundary of the Sun. Evidently, the solar surface, described by a sphere of unit radius lo-
cated inside the computational domain, cannot be consistent with any of the Cartesian or
cylindrical coordinate surfaces. The inner (solar surface) boundary yields the question of
how these boundary conditions are well realized on the grid, since it contains the surface
from which the solar wind emanates. Intuitively, the Sun’s geometry, obviously spherical
shaped, would suggest the use of spherical coordinates (r, θ,φ), especially since the ra-
dial convergence of lines of constant (θ,φ) can entail the extra advantage of enhanced
spatial resolution near the Sun’s surface. Any grid partition of the spherical shell geome-
try will lead to polyhedron mesh grids in the case of spherical coordinates, and requires
a spherical-surface body fitting produced by a cutting-cell technique in the case of Carte-
sian or cylindrical coordinates. As is well known, dealing with the boundary conditions
properly is a critical aspect in such numerical modeling, as the Sun is the source of the
activities in the corona and in the interplanetary space. The implementation of AMR in
polyhedron grid systems is also a challenge. Even the block-AMR grid successfully used
in Cartesian coordinates still has shortcomings when dealing with the spherical surface
boundary conditions. Firstly, the blocks must be refined to a much higher level to approx-
imate the spherical surface, which will be a great overhead on the management of the data
structure, and even so, the spherical surface cannot be represented exactly and the corre-
sponding numerical errors will be transported into the domain. Secondly, the boundary
conditions become difficult to implement on the boundary blocks in the Cartesian condi-
tion, even impossible in the case of boundary coordinates using the characteristic method,
where the finite differences must be computed on the surface (Wu et al., 2001, 2006).

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr.html
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A natural choice to overcome these difficulties is the structured boundary-fitted grid in
curvilinear coordinates, which can characterize the computational domain more excellently
and precisely than other grid systems but with less memory requirement (Anderson, 1995;
Hoffman and Chiang, 2000). These are all our considerations for the use of general curvi-
linear coordinates, which can handle the computational domain and the boundary condi-
tions more excellently and precisely. At the same time, the AMR technique is efficient
in solving problems with multi-orders of spatial and temporal scales like the solar wind
flows and global evolution of CMEs from the Sun to the Earth, since the plasma flow and
magnetic field admit a large disparity of magnitude in the solar-terrestrial space. To this
end, the present work is devoted to the AMR implementation of the CESE-MHD method
in general curvilinear coordinates, by transforming the governing PDEs from the physi-
cal space to the computational space, in anticipating the applications in solar-terrestrial
physics. As the first step, several general benchmarks are validated to show the capabili-
ties.

This paper is organized as follows. Section 2 illustrates the model equations. Section 3
presents the improved CESE method in both two and three dimensions, which is modi-
fied from the original method for the convenience of integrating the CESE method within
the PARAMESH package. This method is extended to general curvilinear coordinates in
Section 4. In Section 5 a brief description is given for the implementation of the CESE
method on block-structured AMR grids by utilizing the PARAMESH package and the vari-
able timestep algorithm. Section 6 provides the numerical tests, and the conclusions are
given in Section 7.

2. Model Equations

The governing equations are three-dimensional time-dependent MHD equations written in
Cartesian coordinates as follows:

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

− ∂Fν

∂x
− ∂Gν

∂y
− ∂Hν

∂z
= S, (1)

where

U ≡ (Um) = (ρ,ρv,p,B) = (ρ,ρvx, ρvy, ρvz,p,Bx,By,Bz)
T, (2)

F ≡ (Fm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvx

ρv2
x + p0 − B2

x

ρvxvy − BxBy

ρvxvz − BxBz

γpvx

0

vxBy − vyBx

vxBz − vzBx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, G ≡ (Gm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvy

ρvyvx − ByBx

ρv2
y + p0 − B2

y

ρvyvz − ByBz

γpvy

vyBx − vxBy

0

vyBz − vzBy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3)
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H ≡ (Hm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvz

ρvzvx − BzBx

ρvzvy − BzBy

ρv2
z + p0 − B2

z

γpvz

vzBx − vxBz

vzBy − vyBz

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Fν ≡ (Fνm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

νρ ∂vx

∂x

νρ
∂vy

∂x

νρ
∂vz

∂x

0

μ∇ · B

ηjz

−ηjy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Gν ≡ (Gνm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

νρ ∂vx

∂y

νρ
∂vy

∂y

νρ
∂vz

∂y

0

−ηjz

μ∇ · B

ηjx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4)

Hν ≡ (Hνm) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

νρ ∂vx

∂z

νρ
∂vy

∂z

νρ
∂vz

∂z

0

ηjy

−ηjx

μ∇ · B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S ≡ (Sm) = [0,F, (γ − 1)(v · ∇p + ηj · j + νρ∇v:∇v),0]T

− ∇ · B(0,B,0,v)T, (5)

with the total pressure p0 = p + (B2
x + B2

y + B2
z )/2. Here, ρ,v,p and B are the mass

density, plasma velocity, gas pressure, and magnetic field, respectively. (jx, jy, jz) are the
components of the electric current j = ∇ × B. F is the external force exerted on the
plasma. ν is the kinematic plasma viscosity, and η is the electrical resistivity. γ is the
ratio of the specific heats. r is the position vector, and t is the time. This model be-
comes ideal MHD for ν = 0, η = 0, while it is resistive MHD when ν and η are finite.
Um,Fm,Gm,Hm,Fνm,Gνm,Hνm, and Sm (m = 1,2, . . . ,8) are the components of the flux
vectors U,F,G,H,Fν,Gν,Hν , and S, respectively. For completeness, the Jacobian matrices
for the fluxes F,G and H are given in the Appendix.

At the same time, the Powell source terms −∇ · B(0,B,0,v)T are added to deal with the
divergence of the magnetic field (Powell et al., 1999), and we also use the diffusive control
of ∇ · B (Marder, 1987; Dedner et al., 2002; Tóth et al., 2006) by adding the term μ∇ · B to
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viscous fluxes Fν,Gν,Hν , which is equivalent to adding a diffusive source term ∇(μ∇ · B)

to the magnetic induction equation. In this way, the diffusive control term is a component
of the viscous fluxes, which can be treated conveniently by the CESE method (Section 3).
Here μ is a spatially varying coefficient properly chosen to maximize the diffusion without
introducing a numerical instability.

The primitive variables ρ,v,p,B, current density j, position vector r and time t in Equa-
tion (1) have been normalized by their corresponding characteristic values ρ0, v0, B2

0/μ0,
B0, j0, L0 and L0/v0, where ρ0,B0,L0 are three properly chosen basic quantities used for
nondimensionalization, μ0 is the permeability of a vacuum, v0 = B0/

√
μ0ρ0 is the Alfv́en

speed, and j0 = B0/(μ0L0) is the characteristic current density. In the same way, the viscos-
ity ν and resistivity η are normalized by L0v0 and μ0L0v0.

3. Improved CESE Method

The above MHD equation (1) can be rewritten as

∂Um

∂t
+ ∂Fm

∂x
+ ∂Gm

∂y
+ ∂Hm

∂z
− ∂Fνm

∂x
− ∂Gνm

∂y
− ∂Hνm

∂z
= Sm. (6)

Here, we can write Fνm,Gνm,Hνm and Sm as functions of U, its spatial gradients of U (i.e.,
Ux,Uy,Uz) and the spatial vector r, since

∇ · B = U6x + U7y + U8z, (7)

j = ∇ × B = (U8x − U7z,U6z − U8x,U7x − U6y). (8)

For convenience, we first describe our improvement of the CESE scheme in the two-
dimensional case and then extend it to the three-dimensional case directly. By using Gauss’s
divergence theorem in a three-dimensional Euclidean space E3 (whose coordinates are de-
fined as x1 = x, x2 = y, x3 = t ) in Equation (6), we have

∮
S(V )

hm · ds =
∫

V

Sm dV (9)

where hm = (Fm −Fνm,Gm −Gνm,Um) is the space – time flux vector, S(V ) is the boundary
of the space – time region V in E3, and hm · ds is the space – time flux leaving through the
surface element ds.

For Cartesian coordinates with a uniform mesh, a much simple CESE scheme can be
used. In Figure 1, the spatial domain is divided into quadrilateral meshes. Let i, j and n

be the indices for x, y and t , respectively. Let � denote the set of mesh points (i, j, n)

in E3 with n = 0,±1/2,±1,±3/2, . . . , i = n ± 1/2, n ± 3/2, n ± 5/2, . . . , j = n ± 1/2,

n ± 3/2, n ± 5/2, . . . .
Figure 1 shows the projection of the mesh points onto the x – y plane. The points marked

by an open circle like G are at the time level n; and points marked by a filled circle such as
A, B, C, and D are at the time level n − 1/2. The time interval is �t/2.

For every mesh point in �, there exists a solution element SE(i, j, n). As shown in Fig-
ure 2, the solution element SE(i, j, n) associated with G′ is defined as the union of three
planes, A′B′C′D′, W′′E′′EW, and S′′N′′NS, which intersect at G′ and are perpendicular to
each other. Similarly, associated with the points A, B, C, and D, there are four solution
elements: SE(i + p/2, j + q/2, n − 1/2) for all p,q = −1,1.
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Figure 1 The CESE scheme in two dimensions; the projection of the mesh points in E3 onto the x – y plane.

Figure 2 The CESE scheme in
two dimensions; definitions of
CE and SE.

As usual in the CESE method (Zhang, Yu, and Chang, 2002; Zhang et al., 2006; Feng,
Hu, and Wei, 2006; Feng, Zhou, and Wu, 2007), the space – time conservation element (CE)
of G′, ABCDA′B′C′D′, can be formed with surfaces associated with SE(i, j, n) and surfaces
associated with the four SEs at the time level n − 1/2 (Figure 2).

Although similar to the definition of conservation elements (CEs) in Zhang et al.
(2006), note that here the surfaces of the CE are parallel to the coordinate surfaces,
which makes the integration of fluxes simpler and more convenient, especially in the
three-dimensional case, because on any surface of the CE, the normal vector is along
the coordinate axis perpendicular to the surface, and thus only one component of the
total flux h is needed when calculating the space – time flux leaving through this sur-
face.

Inside any SE(i, j, n), the distributions of the variables Um(x, y, t; i, j, n), Fm(x, y, t;
i, j, n) and Gm(x, y, t; i, j, n) are approximated by the first-order Taylor expansion at point
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(i, j, n),

Um(x, y, t; i, j, n) = (Um)n
i,j + (Umx)

n
i,j dx + (Umy)

n
i,j dy + (Umt )

n
i,j dt,

Fm(x, y, t; i, j, n) = (Fm)n
i,j + (Fmx)

n
i,j dx + (Fmy)

n
i,j dy + (Fmt )

n
i,j dt, (10)

Gm(x, y, t; i, j, n) = (Gm)n
i,j + (Gmx)

n
i,j dx + (Gmy)

n
i,j dy + (Gmt )

n
i,j dt,

with

(Fx)
n
i,j = ∂F

∂U
(Ux)

n
i,j , (Fy)

n
i,j = ∂F

∂U
(Uy)

n
i,j , (Ft )

n
i,j = ∂F

∂U
(Ut )

n
i,j ,

(11)

(Gx)
n
i,j = ∂G

∂U
(Ux)

n
i,j , (Gy)

n
i,j = ∂G

∂U
(Uy)

n
i,j , (Gt )

n
i,j = ∂G

∂U
(Ut )

n
i,j ,

where dx = x − xi , dy = y − yj , dt = t − tn. The viscous fluxes can be set as constant in
the SE (Feng, Hu, and Wei, 2006) because they consist mainly of the first-order derivatives
of the unknown variables (which are assumed to be linear in the SE), i.e.,

Fνm(x, y, t; i, j, n) = (Fνm)n
i,j ,

(12)
Gνm(x, y, t; i, j, n) = (Gνm)n

i,j .

Substituting Equations (10) and (12) into Equation (6), we can obtain

(Umt )
n
i,j = −(Fmx)

n
i,j − (Gmy)

n
i,j + (Sm)n

i,j . (13)

Note that Equations (6) and (10) – (13) imply that the independent solution variables at
(i, j, n) are merely (Um)n

i,j , (Umx)
n
i,j , (Umy)

n
i,j , and (Umz)

n
i,j .

The space – time flux conservation of Equation (9) can be approximated by its discrete
counterpart (Figure 2),

∮
S(CE(G′))

hm · ds =
∮

S(ABCDA′B′C′D′)
hm · ds =

∫
V (CE(G′))

Sm dV (14)

and with the aid of Equations (10) and (12), we have

(Um)n
i,j − �t

2
(Sm)n

i,j

= 1

�x�y

∑
p=−1,1;q=−1,1

�x�y

4

[
(Um)

n−1/2
ip,jq + (Umx)

n−1/2
ip,jq

(
−p

�x

4

)

+ (Umy)
n−1/2
ip,jq

(
−q

�y

4

)]

− p
�y�t

4

[
(Fm − Fνm)

n−1/2
ip,jq + (Fmy)

n−1/2
ip,jq

(
−q

�y

4

)
+ (Fmt )

n−1/2
ip,jq

(
�t

4

)]

− q
�x�t

4

[
(Gm − Gνm)

n−1/2
ip,jq + (Gmx)

n−1/2
ip,jq

(
−p

�x

4

)

+ (Gmt)
n−1/2
ip,jq

(
�t

4

)]
(15)
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where ip = i + p/2, jq = j + q/2 for short. By solving the preceding nonlinear equations
using Newton’s method (Feng, Hu, and Wei, 2006; Feng, Zhou, and Wu, 2007), the values
at time level n, (Um)n

i,j can be obtained from the solution variables of n − 1/2.
Before calculation of the spatial gradients of flow variables (Umx)

n
i,j and (Umy)

n
i,j , we

use a Taylor series expansion along the time axis from the time level n − 1/2 to obtain the
variables at the points of A′, B′, C′ and D′. For example, at A′,

(U ′
m)A′ = (Um)A + �t

2
(Umt )A. (16)

Then, we divide the square plane A′B′C′D′ into four triangles: A′B′G′, B′D′G′, D′C′G′ and
A′C′G′. In each triangle, we finite-difference Um at the three vertices to obtain the flow
variable gradient (Umx)

n
i,j and (Umy)

n
i,j at point G′. After obtaining all four sets of flow

variable gradients, an α type of reweighting procedure is applied to get the final variable
gradients (Umx)

n
i,j , (Umy)

n
i,j , with α = 1 or 2 as a prescribed constant for shock capturing,

and 0 for flows without shocks (see the details described in Zhang, Yu, and Chang, 2002;
Zhang et al., 2006; Feng, Hu, and Wei, 2006; and Feng, Zhou, and Wu, 2007).

Similarly, the three-dimensional case follows the two-dimensional case. Now, for in-
stance, the SE(i, j, k, n) associated with G′ is defined as the union of four hyperplanes (x –
y – z, y – z – t , x – z – t and x – y – t hyperplanes) which intersect at G′ in a four-dimensional
Euclidean space (whose coordinates are set as x1 = x, x2 = y, x3 = z, x4 = t ). Similarly, the
CE of G′ is formed by hypersurfaces associated with SE(i, j, k, n) of G′ and eight SEs
of A1,A2,A3, . . . ,A8 at the time level n − 1/2, which are SE(i + p/2, j + q/2, k + r/2,

n − 1/2), for all p,q, r = −1,1 (see Figure 3). Applying the space – time flux conservation
law in CE (of G′) of the four-dimensional Euclidean space, we have

(Um)n
i,j,k − �t

2
(Sm)n

i,j,k = 1

�x�y�z

∑
p=−1,1;q=−1,1;r=−1,1

�x�y�z

8

[
(Um)

n−1/2
ip,jq,kr

+ (Umx)
n−1/2
ip,jq,kr

(
−p

�x

4

)

+ (Umy)
n−1/2
ip,jq,kr

(
−q

�y

4

)
+ (Umz)

n−1/2
ip,jq,kr

(
−r

�z

4

)]

− p
�y�z�t

8

[
(Fm − Fνm)

n−1/2
ip,jq,kr + (Fmy)

n−1/2
ip,jq,kr

(
−q

�y

4

)

+ (Fmz)
n−1/2
ip,jq,kr

(
−r

�z

4

)
+ (Fmt )

n−1/2
ip,jq,kr

(
�t

4

)]

− q
�x�z�t

8

[
(Gm − Gνm)

n−1/2
ip,jq,kr + (Gmx)

n−1/2
ip,jq,kr

(
−p

�x

4

)

+ (Gmz)
n−1/2
ip,jq,kr

(
−r

�z

4

)
+ (Gmt )

n−1/2
ip,jq,kr

(
�t

4

)]

− r
�x�y�t

8

[
(Hm − Hνm)

n−1/2
ip,jq,kr + (Hmx)

n−1/2
ip,jq,kr

(
−p

�x

4

)

+ (Hmy)
n−1/2
ip,jq,kr

(
−q

�y

4

)
+ (Hmt )

n−1/2
ip,jq,kr

(
�t

4

)]
(17)

where ip = i + p/2, jq = j + q/2 and kr = k + r/2 for short. When calculating the gra-
dients of the variables, the values of eight vertices A′

1,A′
2, . . . ,A′

8 are obtained similarly
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Figure 3 The CESE scheme in
three dimensions; the projection
of the mesh points in E4 onto the
Cartesian (x, y, z)-space.

by Taylor series expansion along the time axis from the time level n − 1/2. Then eight
tetrahedrons can be determined by G and three points from the eight vertices surrounding
G. By finite-difference of Um at four vertices of each tetrahedron respectively, eight sets
of Umx , Umy , Umz are obtained. Then the same procedure of reweighting is used to get the
final Umx , Umy , Umz at point G′. For clarity, here we specifically denote the eight tetrahe-
drons A2A3A5G, A4A6A1G, A1A4A7G, A2A3A8G, A1A6A7G, A2A5A8G, A3A5A8G, and
A4A6A7G (Figure 3), where the differences are applied.

If using the present CESE scheme directly on the grid system of the AMR algorithm,
it becomes difficult to transfer (prolong or restrict) the solution variables between meshes
of different refinement levels, as these operations must be done on data of the same time
level, while the present scheme is a space – time staggering stencil, which turns out to be a
obstacle. Here we use an improved version of the present method for convenience: we only
reserve the solution variables on the time level n of integer numbers, while the intermediate
time level n + 1/2 can be seen as a prediction step as in the predictor-corrector type time
integration and the solution variables on this prediction level are calculated temporarily; so
a full time step here consists of two half steps which are advanced from n to n + 1/2 (from
the points marked by filled circles to points marked by open circles in Figure 1) and from
n + 1/2 to n + 1 (from the open circles to the filled circles), and as seen from Figure 1,
the full time step from time n to n + 1 for point D is actually associated with eight points
surrounding it at time n (marked by filled circle) and itself, which is a nine points stencil
in two dimensions. Similarly, there are 27 points involved in one full time step in the three-
dimensional case. In this way, all the mesh points in the scheme are at the same time level
after one full-time step marching.

4. Modified CESE Method in General Curvilinear Coordinates

The MHD equation (Equation (1)) can be transformed from the physical space (x, y, z) to
the reference space (ξ, η, ζ ) by specifying the nonsingular mapping

x = x(ξ, η, ζ ); y = y(ξ, η, ζ ); z = z(ξ, η, ζ ), (18)
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and the Jacobian matrix

J = ∂(x, y, z)

∂(ξ, η, ζ )
=
⎛
⎝

xξ xη xζ

yξ yη yζ

zξ zη zζ

⎞
⎠ ,

(19)

J−1 = ∂(ξ, η, ζ )

∂(x, y, z)
=
⎛
⎝

ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

⎞
⎠ .

The reference space (ξ, η, ζ ) is also called the computational space, and the mapping equa-
tion (Equation (18)) represents the transformation between the two spatial spaces. The el-
ements of the Jacobian matrix are called metrics and may be computed analytically or nu-
merically.

Now the corresponding transformed MHD equations in the reference space (ξ, η, ζ ) read

∂Û
∂t

+ ∂F̂
∂ξ

+ ∂Ĝ
∂η

+ ∂Ĥ
∂ζ

− ∂F̂ν

∂ξ
− ∂Ĝν

∂η
− ∂Ĥν

∂ζ
= Ŝ, (20)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Û = JU,

F̂ = J (Fξx + Gξy + Hξz),

Ĝ = J (Fηx + Gηy + Hηz),

Ĥ = J (Fζx + Gζy + Hζz),

F̂ν = J (Fνξx + Gνξy + Hνξz),

Ĝν = J (Fνηx + Gνηy + Hνηz),

Ĥν = J (Fνζx + Gνζy + Hνζz),

Ŝ = JS.

(21)

Here J is the Jacobian determinant of the transformation J = |J|, which is interpreted as
the ratio of the cell volume in the reference space to that of the physical space. Note that
Equation (20) is still written in conservation form, just like the original Equation (1). The
transformed equations are also said to be of strong conservation form in the reference space
(Viviand, 1975; Vinokur, 1974).

Now the CESE method can be built in the reference space (ξ, η, ζ ) to solve the trans-
formed MHD Equation (20): let x1 = ξ, x2 = η,x3 = ζ, x4 = t be the coordinates of the four-
dimensional Euclidean space E4; then the space – time flux vector is defined as ĥ = (F̂− F̂ν ,
Ĝ − Ĝν , Ĥ − Ĥν , Û), and by using Gauss’s divergence theorem in this E4 we still have

∮
S(V )

ĥ · ds =
∫

V

Ŝ dV (22)

in the reference space because of the strong conservation form of Equation (20).
Similar to the case in the physical space (Section 3), a uniform and rectangular grid can be

used in the reference space. Now (Û, Ûξ , Ûη, Ûζ ) are introduced as the independent solution
variables. In order to get the corresponding first-order Taylor expansions (Equation (10)), the
derivatives of the flux vectors such as F̂, Ĝ, Ĥ should be calculated, but this requires a little
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more work. For instance, let’s write F̂ as

F̂ = αF + βG + γ H (23)

with α = Jξx , β = Jξy and γ = Jξz, all of which are known functions of (ξ, η, ζ ). Then,
by the chain rule, for F̂ξ and F̂t we have

F̂ξ = αξ F + βξ G + γξ H +
(

α
∂F
∂U

+ β
∂G
∂U

+ γ
∂H
∂U

)
Uξ , (24)

F̂t =
(

α
∂F
∂U

+ β
∂G
∂U

+ γ
∂H
∂U

)
Ut , (25)

where Uξ = (Ûξ − Jξ U)/J,Ut = Ût /J . In the same way, all the other derivatives of the flux
vectors can be derived. With these preparations, the CESE method in curvilinear coordinates
follows the same steps as those for the CESE method in Cartesian coordinates of the physical
space in Section 3.

For convenience, we will call the solving variables (Û, Ûξ , Ûη, Ûζ ) in the reference space
the reference solution variables, and (U,Ux,Uy,Uz) the physical solution variables. Since
the conversions between the reference solution variables and the physical solution variables
are frequently used, for instance in initial and boundary conditions, we address all the re-
lations here. From the physical solution variables to the reference solution variables, we
obtain ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Û = JU,

Uξ = Uxxξ + Uyyξ + Uzzξ ,

Uη = Uxxη + Uyyη + Uzzη,

Uζ = Uxxζ + Uyyζ + Uzzζ ,

Ûξ = Jξ U + JUξ ,

Ûη = JηU + JUη,

Ûζ = Jζ U + JUζ .

(26)

From the reference solution variables to the physical solution variables, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = Û/J,

Uξ = (Ûξ − Jξ U)/J,

Uη = (Ûη − JηU)/J,

Uζ = (Ûζ − Jζ U)/J,

Ux = Uξ ξx + Uηηx + Uζ ζx,

Uy = Uξ ξy + Uηηy + Uζ ζy,

Uz = Uξ ξz + Uηηz + Uζ ζz.

(27)

5. AMR Implementation

In this section, we will describe the AMR implementation of the CESE method in curvilinear
coordinates with the PARAMESH package, the refinement criteria, and the variable timestep
algorithm.
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5.1. CESE Method in PARAMESH

As the MHD equations are solved in the reference space (ξ, η, ζ ), the grid is still in rec-
tangular coordinates, which makes the implementation of AMR much more convenient and
straightforward. Most of the default operations in the package like prolongation and restric-
tion can be used without modification.

In detail, i) we specify all the solution variables (Û , Ûξ , Ûη, Ûζ ) at cell center, with the
number of variables nvar= 4 × 8 = 32 defined in PARAMESH. The prolongation and re-
striction are also carried out on the gradients of the variables, which makes our scheme much
different from the AMR implementations on the finite volume scheme. ii) The blocks are set
to consist of 6 × 6 × 6 or 8 × 8 × 8 cells typically, and one layer of guard cells containing
diagonal elements is specified because the CESE method associates three mesh points in
all the three directions. iii) The linear interpolation is used when prolonging the data from
parent blocks to their newborn child blocks, and the average is used when restricting data on
child blocks back to their parents. The same interpolation is used when filling guard cells at
block boundaries next to less refined neighbor blocks.

5.2. Refinement Criteria

Although several approaches are possible, in this work, the refining and coarsening of blocks
are guided by using multiple physics-based refinement criteria (Powell, Roe, and Quirk,
1993; De Zeeuw, 1993; Powell et al., 1999; Groth et al., 2000). Similar to Powell et al.
(1999) and Linde (1998), the refinement criteria are defined, according to a combination of
curl and divergence of the velocity, and curl of the magnetic field

χc = √
V

|∇ · v|
|v| + εa

,

χr = √
V

|∇ × v|
|v| + εa

, (28)

χc = √
V

|∇ × B|
|B| + ε

√
p

,

where a is the plasma sound speed and p is its thermal pressure. The factor ε � 1 is intro-
duced into Equation (28) to eliminate the concern when either v or B is equal to zero. These
criteria can detect all distinctive features in the plasma medium. Specifically, the curl of the
velocity can be used to find shear layers, and the divergence of the velocity can be used to
find shocks, while the curl of the magnetic field (the current density) is used to find electric
current surfaces. The factor

√
V is the length of the cell to the power of 3/2, and a power

greater than one is needed to weaken a possible divergence of the numerators in the criteria,
which allows the scheme to resolve smooth regions of the flows as well as discontinuous
ones (De Zeeuw, 1993).

If any of the maxima of these criteria in one block is greater than the threshold for re-
finement, this block is flagged to be refined, while if all of the maxima of these criteria in
one block are less than the threshold for coarsening, this block is flagged to be coarsened. In
order to set the thresholds, the standard deviation about zero is computed for χ (De Zeeuw,
1993):

σ =
√∑N

i=1 χ2
i

N
(29)



476 Jiang et al.

with i visiting all of the cells in the computation domain. Multiplying each σ by different,
properly chosen factors gives the thresholds.

5.3. Variable Timestep

When there is significant variation in spatial resolution within the computational domain,
the timestep computed using a fixed Courant number will probably also vary significantly
(MacNeice et al., 2000). By using a uniform finest timestep on all the grids (i.e., the blocks
in PARAMESH), the numerical diffusion effects on the much coarser blocks will become
significant, especially in the case of the CESE method. At the same time, using the finest
timestep globally will add a great overhead on the computation resource because of unnec-
essary fine timesteps of solution-advancing on these blocks.

The variable timestep is introduced here to overcome these problems. We use different
timesteps on different blocks, and the timesteps are directly proportional to the physical
scale irrespective of the refinement level, because the refinement level in the reference space
does not represent the spatial resolution in the physical space. For instance, in spherical
coordinates with the same refinement level, a block near the origin will be much smaller
than a block far away from the origin.

In particular, we first define the timestep �t of block b as a monotonic function of the
physical scale

�t = CFL
�Lb

vmax
(30)

where vmax is the maximal wave speed in the entire computation domain, and �Lb is the
minimal physical size of cells in block b; and then the timestep is adjusted as

�t = 2α�tmin, α = [log2(�t/�tmin)
]

(31)

with �tmin as the minimal timestep of all the blocks. Namely, on the two neighboring blocks,
the timestep on one block is either the same or a factor of an integer number larger (or
smaller) than that on the other block. At the interface of timestep jump, linear time inter-
polation from the larger-timestep block is used to set guard cell values when needed on the
block with the finer timestep. When the blocks with the biggest timestep are advanced one
step, all the blocks must be synchronized before moving on.

A short description of our time-stepping algorithm is presented here. We grouped the
blocks by their timesteps with each group of blocks having the same timestep. In Figure 4,
for instance, the blocks are divided into three groups with timesteps of �t1,�t2 and �t3,
respectively, and �t1 = 2�t2 = 4�t3. Correspondingly, the groups are named group 1,
group 2 and group 3. The color arrows represent one step of solution advance of a
given group, and the groups with the same color can be advanced simultaneously. The black
arrows denote the necessity of time interpolation of solution when guard cell filling. The
grid will not be modified until all blocks have been advanced through the biggest timestep.
We show the basic algorithm as follows:

INITIAL the timestep: for all leaf blocks
U2=unk; U1=unk

maxstep = dt(1)/dt(ndtlevel)
DO step = 1,maxstep

DO n = 1,ndtlevel
IF( time(n) == time(ndtlevel) )then
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for all leaf blocks in group n
U1 = U2
ADVANCE U2 using CESE method

time(n) = time(n)+dt(n)
END IF

END DO

DO n = 1,ndtlevel
ke = (time(n)-time(ndtlevel))/dt(n)
TIME INTERPOLATION: for all leaf blocks in group n

unk = ke*U1+(1-ke)*U2
END DO

make all blocks SYNCHRONIZED here
GUARDCELL FILLING globally
DO n = 1,ndtlevel

IF( time(n) == time(ndtlevel) )then
for all leaf blocks in group n

U2 = unk
END IF

END DO
END DO
END the timestep: for all leaf blocks

unk = U2

where ndtlevel is the number of timestep levels or the number of groups; e.g.,
ndtlevel=3 in Figure 4. time(n) is the timer of group n, dt(n) the timestep �t

of group n, and ke is a factor used for the linear interpolation of time; unk is the solu-
tion data-structure in PARAMESH while the copy of unk: U1, U2 can be allocated and
deallocated temporarily.

Figure 4 The variable timestep scheme: an example.
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6. Numerical Tests

As far as we know, the CESE method has never yet been realized on the grid system of the
AMR algorithm to solve the MHD equations or even the hydrodynamic (HD) equations.
To test the feasibility of this totally new implementation, some benchmarks are validated
here by reporting the numerical results using the AMR-CESE method in general curvilinear
coordinates.

Section 6.1 shows the solution of a two-dimensional MHD vortex problem on AMR
grids in Cartesian coordinates for validation of the CESE method with AMR. In Section 6.2,
a fast magnetic reconnection problem is calculated to test the capability of modeling resistive
MHD. Section 6.3 presents the results of a two-dimensional MHD blast wave problem in
both Cartesian and polar coordinates to verify the CESE method in curvilinear coordinates.
In Section 6.4, the three-dimensional version of the MHD blast wave problem is calculated
in both Cartesian and spherical coordinates, and these problems are also carried out on an
AMR grid. In these tests, we choose the adjustable constant α = 2, and the coefficient μ in
the diffusive control terms of ∇ · B is set as

μ = 0.2
Lcell

2

�t
(32)

with variable values according to the physical size of the cell Lcell and the local timestep �t .

The factor 0.2 is chosen considering the stability constraint �t <
L2

cell
2μ

. The ratio of the
specific heats γ = 5/3 and the kinematic plasma viscosity ν = 0 are used in all these tests.
For the vortex problem and the blast wave problems, the ideal MHD is modeled by setting
η = 0.

6.1. MHD Vortex Problem

The MHD vortex problem, proposed by Orszag and Tang (1979), has been used in many
papers as a two-dimensional numerical test for MHD codes (Jiang and Wu, 1999; Tóth,
2000; Zhang et al., 2006). It is a particularly good test for capability examination of AMR
implementations due to its own significant features of MHD turbulence; as time evolves, the
structure of the field will become very complicated with shocks and discontinuous surfaces
(Ziegler, 1998, 2003; Collins and Norman, 2004; Stone et al., 2008).

As usual, the computational domain is set as [0,2π ] × [0,2π], and the initial conditions
are given as

ρ(x, y,0) = γ 2,

p(x, y,0) = γ,

(33)
v(x, y,0) = (− siny, sinx,0),

B(x, y,0) = (− siny, sin 2x,0).

Periodic boundary conditions are imposed on boundaries in both the x and y directions.
Initially, the domain is uniformly divided into 16 × 16 blocks with each block consisting of
6 × 6 cells, and three levels of refinements are used in this test such that the mesh size of
the middle level is the same as that used by Jiang and Wu (1999) and Zhang et al. (2006),
which makes our results comparable with theirs.
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Figure 5 MHD vortex problem: color-coded images of pressure at t = 2 and 3 (left column) and the grid
blocks at the corresponding time (right column, each cell here represents one grid block).

The left column in Figure 5 shows the pressure contours at t = 2 and 3, respectively.
For the purpose of detailed comparison, the pressure profiles along the line of y = 0.625π

plotted in Zhang et al. (2006) is also presented in Figure 6 at the same time. These fig-
ures show that our results are almost the same as the former results (Jiang and Wu, 1999;
Zhang et al., 2006), and the shock profiles in our results are much sharper than the re-
sults obtained by Zhang et al. (2006), especially near x = 0.4 and 3.5 at t = 2 and
near x = 0.4 and 4.4 at t = 3 because the finest meshes occur there. The right column
in Figure 5 shows the structures of the blocks at the corresponding time. We can see
immediately that the blocks of higher refinement levels are clustering near the shocks
and discontinuities, which means that these features are well captured by the adaptive
meshes.

Although the simple linear prolongation and restriction in the implementation of the
AMR grid is considered here, the AMR-CESE method gives satisfactory results.
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Figure 6 MHD vortex problem: pressure profile along line y = 0.625π at t = 2 (left) and 3 (right).

6.2. Spontaneous Fast Reconnection Problem

Spontaneous fast reconnection is a new type of nonlinear instability in a long current sheet
system (Ugai, 1999) representing the basic physical mechanism of magnetic reconnection
responsible for catastrophic events in space plasmas such as solar flares, CMEs, and geo-
magnetic substorms. Here this important nonlinear instability problem is calculated by using
the AMR-CESE method. As done by Ugai (1999) and Feng, Hu, and Wei (2006), we take
the initial static equilibrium condition

B = (Bx,0,0), p = (1 + β) − B2
x

2
, ρ = 2p

1 + β
, v = 0, (34)

Bx(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(πy/2) if 0 < y < 1,
1 if 1 < y < Y1,
cos[(y − Y1)π/1.2] if Y1 < y < Ym(= Y1 + 0.6),
0 if y > Ym,
−Bx(x,−y) if y < 0,

(35)

where the width of the magnetized region is chosen as Y1 = 3.6 and the plasma β is 0.15. An
initial disturbance is assumed by imposing a localized resistivity at the origin (x, y) = (0,0)

in the form

η(r) = 0.02e−(x/1.1)2−(y/1.1)2
(36)

for the initial time range 0 < t < 4. After t = 4, consider a current-driven anomalous resis-
tivity model as

η(r, t) =
{

kR[Vd(r, t) − VC] if Vd > VC,
0 if Vd < VC,

(37)

Vd(r, t) = ∣∣J(r, t)/ρ(r, t)
∣∣, VC(r, t) = VC0

[
T (r, t)/T0

]α
, (38)

where kR = 0.003, VC0 = 4, α = 0.5 and T0 = (1 + β)/2.
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Figure 7 Spontaneous fast reconnection problem: (left) temporal variations of E(r = 0), η(r = 0),
vy(x = 0, y = 0.9) and �(t) and (right) profiles of the outflow velocity vx(x, y = 0) (solid lines) and the
reconnected field component By(x, y = 0) (dotted lines) along the x-axis at t = 24 (left) and at t = 30
(right).

According to the symmetry boundary conditions with respect to the x- and y-axes, the
computational region is restricted to the first quadrant only and taken to be a rectangular
box, (x, y) ∈ [0,6Y1] × [0,2Y1]. On the other boundaries, the free boundary conditions are
assumed. Three levels of refinements are used, with the coarsest cell size �y = �x/3 =
0.05625 and the finest cell size �y = �x/3 = 0.0140625, so that the finest mesh size is
nearly the same as that used by Ugai (1999) and Feng, Hu, and Wei (2006).

We run our simulation until t = 30, when the reconnection evolution has accomplished
the initial evolutionary phase (10 < t < 20) and the explosive phase (20 < t < 27); the re-
sults are presented in Figures 7 and 8. Figure 7 shows the temporal variations of four typical
quantities: the resistivity η(r = 0, t), the reconnection rate E(r = 0, t) = η(r = 0, t)J (r =
0, t), the initially residing magnetic flux �(t) (defined by Ugai, 1999),

�(t) =
∫ y=Ly

y=0
Bx(x = 0, y, t)dy = �(0) +

∫ τ=t

0
E(r = 0, τ )dτ (39)

and the plasma inflow velocity vy(x = 0, y = 0.9, t), as well as the temporal behaviors of
By and vx at t = 24 and t = 30. This figure corresponds to Figures 1 and 2 obtained by
Ugai (1999), or Figure 2 in Feng, Hu, and Wei (2006). Figure 8 gives the magnetic field
configurations, pressure p and current density |J| at the typical times t = 18 and t = 30, just
before and after the explosive phase. Our results are almost identical to those in Ugai (1999)
and Feng, Hu, and Wei (2006); however, much less computation resource is needed due to
the implementation of the AMR grid.

6.3. Two-dimensional MHD Blast Wave Problem

The MHD spherical blast wave problem (Zachary, Malagoli, and Colella, 1994; Gardiner
and Stone, 2008) is initiated by an over-pressured region in the center of a strongly mag-
netized medium with low plasma β . The blast will drive fast shocks moving outward, com-
pressing the plasma and magnetic field ahead and leaving rarefied plasma behind.

In this section, the two-dimensional MHD blast wave problem is calculated in both Carte-
sian coordinates and polar coordinates to validate our AMR-CESE method in curvilinear
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Figure 8 Spontaneous fast reconnection problem: magnetic field lines and the color-coded images of plasma
pressure (left column) and color-coded images of current density and the corresponding grid blocks (right
column). The first row shows snapshots at t = 18, the second row at t = 30.

coordinates. We first present the computation under a uniform mesh in both coordinate sys-
tems, and then we show the results of AMR implementation in the polar coordinates. In these
tests (and in the three-dimensional cases in the next section), we followed the test suite of
Skinner and Ostriker (2010), which was designed to verify their code Athena in cylindrical
geometry.

Here, the computational domain in Cartesian coordinates is (x, y) ∈ [1,2] × [−0.5,0.5],
and in polar coordinates is (r, θ) ∈ [1,2] × [−1/3,1/3], so that the domains in the physi-
cal space are roughly similar in both cases with the center of the over-pressured region at
(x, y) = (1.5,0). For polar coordinates, we set the reference space as (ξ, η), which is related
to the physical space (x, y) by

x = r cos θ, y = r sin θ; r = eξ , θ = η. (40)

Thus, by using a uniform mesh in the reference space with cell size �ξ = �η, the cells in the
physical space will have cell size �r = eξ (e�ξ − 1) ≈ r�θ , which means that the cells are
close to regular squares not only in the reference space but also in the physical space. With
the transformation given by Equation (40), all the other relations needed in Equation (21)
can be derived analytically.

The initial conditions for this problem are set as

ρ = 1, p =
{

10 if
√

(x − 1.5)2 + y2 < 0.1,

0.1 if
√

(x − 1.5)2 + y2 ≥ 0.1,

v = 0, B = (1/
√

2,1/
√

2,0)

(41)

while the boundary variables are fixed (as numerical computation is terminated before the
outermost shock reaches any boundary faces).
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Figure 9 Color-coded images of
the density, pressure, specific
kinetic energy, and magnetic
energy at time t = 0.2 for the
two-dimensional MHD blast
wave problems computed in
polar coordinates (left column)
and Cartesian coordinates (right
column).

The initial conditions are evolved until time t = 0.2 using 256 × 256 computational
grids in both coordinate systems. Figure 9 shows the color-coded images of the density,
pressure, specific kinetic energy, and magnetic energy calculated in both cases at the end
time (t = 0.2). We also plot these variables along a horizontal line (i.e., the x-axis) through
the center of the blast (Figure 10).

As shown in these figures, our results are highly in agreement with those calculated in
Skinner and Ostriker (2010). The outermost surface seen in Figure 9 is a fast-mode shock
that is only weakly compressive and energetically is dominated by the magnetic field. In-
terior to this, one finds two dense shells of gas which propagate parallel to the magnetic
field. These shells are bounded by a slow-mode shock and contact surface (separating the



484 Jiang et al.

Figure 10 Plots of the same variables in Figure 9 along a horizontal line through the center of the blast. The
solid lines denote the results in Cartesian coordinates, and the squares denote the results in polar coordinates.

initially hot, interior gas from the surrounding cool ambient medium) on the outer and inner
surfaces, respectively (Gardiner and Stone, 2008). Note that the results for polar coordinates
are almost the same as those for Cartesian coordinates, as seen from the side-by-side com-
parison in Figure 9 and the plots in Figure 10, and the symmetry is well preserved in both
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Figure 11 Color-coded image of pressure at t = 0.2 for the two-dimensional MHD blast wave problem
computed in polar coordinates on the AMR grid system (left), and the corresponding grid blocks (right).

cases. In Figure 10, there is a slight deviation between the two results. This may be caused
by the varying mesh sizes in physical space in the case of polar coordinates.

Figure 11 presents the result of the same problem in polar coordinates but computed on
the AMR grid system. Three levels of refinements are used in the test, and it shows that the
fast- and slow-mode shocks are identified by the grid resolution.

6.4. Three-Dimensional MHD Blast Wave Problem

Now we test our implementation in the three-dimensional case by computing the MHD blast
wave problem using the same procedure as in Section 6.3. Specifically, we first calculate the
blast wave problem using uniform mesh in both three-dimensional Cartesian coordinates
and spherical coordinates to validate the CESE method in curvilinear coordinates, and then
we compute the same problem in spherical coordinates on an AMR grid system to examine
the capability of AMR implementation in curvilinear coordinates.

For convenience of comparison, we set the domain in the Cartesian coordinates as
(x, y, z) ∈ [1,2] × [−0.5,0.5] × [−0.5,0.5] and in the spherical coordinates as (r, θ,φ) ∈
[1,2] × [π/2 − 1/3,π/2 + 1/3] × [−1/3,1/3], and the center of the over-pressured region
at (x, y, z) = (1.5,0,0) in both cases. Similarly, for the spherical coordinates, the mapping
from the reference space (ξ, η, ζ ) to the physical space (x, y, z) is given by

⎧⎪⎨
⎪⎩

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

r = eξ , θ = η, φ = ζ.

(42)

The initial conditions for this problem are given as

ρ = 1, p =
{

10 if
√

(x − 1.5)2 + y2 + z2 < 0.1,

0.1 if
√

(x − 1.5)2 + y2 + z2 ≥ 0.1,

v = 0, B = (1/
√

3,1/
√

3,1/
√

3)

(43)

and for the uniform mesh, 128 × 128 × 128 cells are used.
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Figure 12 Color-coded images
of density, pressure, specific
kinetic energy, and magnetic
energy at t = 0.2 for the
three-dimensional MHD blast
wave problems computed in
spherical coordinates (left
column) and Cartesian
coordinates (right column).

Figure 12 shows images of the density, pressure, kinetic energy, and magnetic energy
sliced along the z = 0 plane at time t = 0.2 in both coordinate systems. The general
structure of the solution is the same as in the two-dimensional calculation (Section 6.3).
Plots of these variables along the x-axis through the center of the blast in Figure 13
show agreement between the results of Cartesian coordinates and those of spherical co-
ordinates.

Figure 14 presents the results of the same problem in spherical coordinates but computed
on the AMR grid system. Three levels of refinements are used in the test, and it shows the
capturing of the fast- and slow-mode shocks by the grid system.
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Figure 13 Plots of the same variables in Figure 12 along a horizontal line through the center of the blast.
The solid lines denote the results in Cartesian coordinates, and the squares denote the results in spherical
coordinates.
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Figure 14 Color-coded pressure (left) and specific kinetic energy (right) sliced along the (r, θ,φ) planes at
t = 0.2 for the three-dimensional MHD blast wave problem computed in spherical coordinates on the AMR
grid system and the corresponding grid blocks (right).

7. Conclusions

In this paper, we have presented a new implementation of the AMR-CESE method for MHD
problems by using the improved CESE method in Cartesian and general curvilinear coordi-
nates. To the best of our knowledge, this is the first application of the CESE method on an
adaptive mesh refinement grid and the first attempt to use the CESE method in curvilinear
coordinates for modeling MHD problems.

First, we rearrange the space – time points of the original CESE method in a uniform
mesh and avoid the space – time staggering nature by integrating two half timesteps into
one full timestep; then the CESE method in Cartesian coordinates of the physical space
is extended to the reference space, where the MHD equations are solved in the general
curvilinear coordinates. In this way, we give the improved version of this numerical scheme
in both two and three dimensions for MHD equations. Besides all the salient advantages
of the original CESE method such as i) a unified treatment of flow evolution in space
and time, ii) enforcement of local and global space – time flux conservation in a coher-
ent and efficient manner, and iii) efficient evaluation of the fluxes at the interface of any
pair of conservation elements (CEs) by means of staggered space – time grids without us-
ing Riemann solvers or other flux models), our improved method has the following mer-
its.

i) The solution points are explicitly given on the mesh nodes, while in the original method,
these points must be calculated after setting the grids.

ii) In the original method for the three-dimensional case, the projection of the CE onto
the spatial space is a 24-faced polyhedron (Zhang, Yu, and Chang, 2002), while it is
simplified to a rectangular cuboid in the improved one.

iii) As described in Section 3, the computation of the flux leaving through the surface of the
CE is greatly simplified, as the normal vector of each face is along the corresponding
axis and only one component of the space – time flux vector is needed on each face. This
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will reduce the CPU time significantly, as the majority of the computation time of the
CESE method is consumed by the flux integration.

iv) By avoiding the space – time staggering nature, the improved method can be more easily
coded, the boundary conditions will be more easily implemented, and the method can
be readily used on the block-AMR grid.

v) The versatility of the general curvilinear coordinates allows our method to be applied in
calculations of problems with simple curved boundaries or problems with very complex
boundaries if combined with the method of overlapping grids (Henshaw and Schwende-
man, 2008).

With the aid of the PARAMESH package, we extend the CESE method on AMR grids.
The variable timestep algorithm, allowing the timesteps to differ from block to block, is also
adopted to save computational resources and reduce the numerical viscosity.

Our method can be applied to model both ideal MHD and resistive MHD problems. To
demonstrate the simulation capability, four problems from both ideal MHD and resistive
MHD are calculated and compared with previously published results, including the MHD
vortex problem, the fast magnetic reconnection problem, and the two- and three-dimensional
MHD blast wave problems. All the numerical results for these problems show good consis-
tency with the previous results. In particular, the last two problems are calculated in Carte-
sian coordinates and curvilinear coordinates, and the results for both coordinate systems
confirm each other very well.

Unlike the uniform mesh, note that on AMR grids for conservation laws, additional con-
sideration is needed for the space – time flux conservation at the interfaces with spatial or
time resolution changes (i.e., the interfaces of grid blocks at different spatial refinement
levels or with different timesteps) to fulfill the global conservation properties of the CESE
method in principle. Specifically, fluxes entering or leaving a grid cell through a common
cell face shared with four cells of a more refined neighbor should be equal to the sum of
the fluxes across the appropriate faces of the four smaller cells. In this work, we did not
consider this constraint in the code because of the requirement of additional inter-block
communication at these interfaces, which is a nontrivial work. Even so, all the numerical
experiments give satisfactory results. As this work is devoted to the preliminary study of the
CESE method on an AMR grid, enforcing the global conservation on AMR grids and the
detailed comparison of results with and without this conservation constraint are left for our
future work.

Our next plan is the implementation of the AMR-CESE method on solar wind modeling
and global simulation of solar explosive phenomena (the initiation and evolution of CMEs),
by extending our SIP-CESE MHD model (Feng, Zhou, and Wu, 2007; Hu et al., 2008;
Zhou, Feng, and Wu, 2008; Zhou and Feng, 2008; Feng et al., 2009) on an AMR grid
system, to discuss the initiation of solar transient events. It is expected that our SIP-AMR-
CESE MHD model in curvilinear coordinates will facilitate the implementation of time-
dependent boundary input by using the continuously available data of the Solar Dynamics
Observatory mission.
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Appendix: Jacobian Matrices of the Fluxes

The Jacobian matrices for the fluxes F,G and H in Equation (1) are given here by

A = ∂F
∂U

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0

−vx
2 2vx 0 0 1 −Bx By Bz

−vxvy vy vx 0 0 −By −Bx 0

−vxvz vz 0 vx 0 −Bz 0 −Bx

− γpvx

ρ

γp

ρ
0 0 γ vx 0 0 0

0 0 0 0 0 0 0 0
−vxBy+vyBx

ρ

By

ρ
−Bx

ρ
0 0 −vy vx 0

−vxBz+vzBx

ρ

Bz

ρ
0 −Bx

ρ
0 −vz 0 vx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

B = ∂G
∂U

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0

−vxvy vy vx 0 0 −By−Bx 0

−vy
2 0 2vy 0 1 Bx −By Bz

−vyvz 0 vz vy 0 0 −Bz −By

− γpvy

ρ
0 γp

ρ
0 γ vy 0 0 0

vxBy−vyBx

ρ
−By

ρ

Bx

ρ
0 0 vy −vx 0

0 0 0 0 0 0 0 0
−vyBz+vzBy

ρ
0 Bz

ρ
−By

ρ
0 0 −vz vy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (45)

C = ∂H
∂U

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0

−vxvz vz 0 vx 0 −Bz 0 −Bx

−vyvz 0 vz vy 0 0 −Bz −By

−vz
2 0 0 2vz 1 Bx By −Bz

− γpvz

ρ
0 0 γp

ρ
γ vz 0 0 0

vxBz−vzBx

ρ
−Bz

ρ
0 Bx

ρ
0 vz 0 −vx

vyBz−vzBy

ρ
0 −Bz

ρ

By

ρ
0 0 vz −vy

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)
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