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Storm-Time Evolution of Energetic Electron Pitch Angle
Distributions by Wave-Particle Interaction∗
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Abstract The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned
propagating whistler mode waves during the 9∼15 October 1990 magnetic storm at L ≈ 3 ∼ 4
is studied, and numerical calculations for energetic electrons in gyroresonance with a band of
frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It
is found that the whistler mode waves can efficiently drive energetic electrons from the larger pitch-
angles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic
storms. This result perhaps presents a feasible interpretation for observation of time evolution of
the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite
(CRRES) spacecraft at L ≈ 3 ∼ 4.
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1 Introduction

Two basic processes resulted from the cyclotron
wave-particle interaction primarily govern the dynam-
ics of the outer radiation belts of the Earth. One is
the pitch-angle diffusion (or scattering) process which
presents an efficient loss mechanism by driving resonant
particles into loss cone [1∼4], while another is the mo-
mentum (or energy) diffusion process responsible for a
stochastic acceleration of electrons [5∼9]. The observa-
tion data by CRRES spacecraft [10] showed that during
the 9∼15 October 1990 storm, the pitch-angle distribu-
tions for energetic (∼ hundreds of keV) electrons were
pancake-shaped before the storms and became broad
and flat during the main phase at L ≈ 3 ∼ 4 associated
with an enhanced whistler mode waves by the freshly
injected particle population on the onset of terrestrial
storms. In addition, since the pitch-angle diffusion time
scale is generally found to be less than the momentum
diffusion time scale particularly in the relativistic par-
ticle energy range [6,11], previous work on the stochastic
acceleration of electrons due to electromagnetic waves
has adopted an important simplification that the dis-
tribution is isotropic or quasi-isotropic [6,12,13]. It is
well-known that wave damping usually scatters parti-
cles to larger pitch angles and results in particle trap-
ping [14], whereas, wave growth associated with particle
anisotropy [15] drives particles into the loss cone and
yields a flat-top (isotropic) distribution, and hence pre-
cipitation [16]. In this study, we shall present a detailed
quantitative description for the pitch-angle diffusion
process to produce the formation of the flat-top distri-

bution driven by the whistler-mode waves distributed
over a standard Gaussian spectrum.

2 Modeling

The typical dispersion relation for field-aligned prop-
agating whistler mode waves in the frequency range
Ω+ � ω < |Ωe|, with negligence of ion motion, can
be written as [17]:

k2 = ω2 − ρω

(ω − 1)
, (1)

where ρ = ω2
pe/|Ωe|2, Ω+, |Ωe| and ωpe are the proton

gyrofrequency, electron gyrofrequency and plasma fre-
quency respectively, ω is the wave frequency scaled by
|Ωe|, k is the wave number scaled by |Ωe|/c with c the
speed of light.

It becomes a typical way to assume that the whistler
mode waves is distributed over a Gaussian frequency
band with a peak frequency ωm and a half width δω:

B2
ω =

{
B2

1 exp[−(ω − ωm)2/δω2] for ω1 ≤ ω ≤ ω2,
0 otherwise,

(2)
where all frequencies are scaled by |Ωe|, parameter B2

1

can be determined by B2
t =

∫ ω2

ω1

B2
ω|Ωe|dω if the total

wave energy density B2
t is given, namely:

B2
1 =

2B2
t

π1/2|Ωe|δω
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×
[
erf

(
ω2 − ωm

δω

)
+ erf

(
ωm − ω1

δω

)]−1

.

(3)
The general (Doppler) condition (in scaled variables)
for energetic electrons in gyroresonance with a parallel
whistler wave can be expressed as

γω − kp cosα = 1, (4)

here α is the pitch angle of electrons, p is the elec-
tron momentum scaled by mec with me being the rest
mass of an electron, γ = [1 + p2]1/2, the Lorentz
factor, gives the kinetic energy of resonant electrons
Ek = (γ − 1)mec

2. The relativistic pure pitch angle
diffusion equation driven by a field-aligned propagating
whistler mode wave has been given by [11]:

∂f

∂t
=

1
sinα

∂

∂α

(
Dαα sin α

∂f

∂α

)
, (5)

where Dαα, the pure pitch angle diffusion coefficient
which is generally a function of wave spectral energy
density and pitch angle α, is given by:

Dαα = |Ωe|2
(p2

γ2
I0 − 2 cosα

p

γ
I1 + cos2 αI2

)
, (6)

here

In = π
|Bk|2
B2

0

∑
kr

( ω

kr

)n∣∣∣∂ω

∂k
− cosα

p

γ

∣∣∣−1

k=kr

, (7)

For n = 0, 1, 2, kr is the root of the resonant Eq. (4),
∂ω/∂k can be evaluated by the dispersion relation (1)
at kr, B2

0 is the total ambient equatorial (dipole)
magnetic field energy; |Bk|, the Fourier transform of
wave magnetic field, can be represented in terms of

Bω through the transformation B2
t =

∫ k2

k1

|Bk|2dk =∫ ω2

ω1

|Bk|2|dk/dω|·dω =
∫ ω2

ω1

B2
ωdω since the total wave

magnetic energy density is the same.
For 0 ≤ α ≤ 90◦ (or 90◦ ≤ α ≤ 180◦), particles move

along the parallel (or antiparallel) direction with the
ambient magnetic field. The solution for Eq. (5) shall
therefore be symmetrical in the two ranges since parti-
cles diffuse the same physical way between two mirror
points. So in the following we assume that the range of
α is [0◦, 90◦] and then extend the results to the range
[90◦, 180◦]. Choosing appropriate initial and bound-
ary conditions, we can evaluate the pitch-angle diffusion
Eq. (5) by a standard numerical technique.

3 Results and discussion

Because for L > 4, it is not so evident that the pitch
angle distribution evolves from the prestorm pancaked
shape into the flat-top shape during the main phase [10],
in the following we shall evaluate the evolution of the
distribution only in the interested region at L = 3 ∼ 4

though the whistler mode waves perhaps play a role on
the pitch angle scattering for L > 4.

Since we concern only the evolution of pancake-
shaped distribution, and the diffusion Eq. (5) is only
associated with pitch-angle α, we assume that the ini-
tial distribution at t = 0 takes the typical loss-cone
form [17]

f0(α, 0) = sinq α, (8)

where q (> 0) represents the pitch-angle anisotropy
of electrons. For a dipole magnetic field the loss-
cone size at LRE (L is the magnetic shell parameter
and RE is the Earth’s radius) is given by sinαL =
L−3/2(4 − 3/L)−1/4. We assume that electrons gradu-
ally scatter into the loss cone and the inner boundary
condition at the edge of loss-cone αL is therefore of the
form

f(αL, t) = f0(αL, 0) exp(−t/τ1), (9)

where τ1 is the characteristic diffusion time and gen-
erally comparable to 1/Dαα at the edge of loss-cone
αL. Since it is believed that the scattering of electrons
from the larger pitch-angles down to the smaller pitch
angles (loss-cone) play an essential role in the forma-
tion of flat-top distribution [10], for the outer boundary
condition (i.e. α → 90◦), we similarly assume that elec-
trons gradually diffuse down to the smaller angles and
choose [1]:

f(α → 90◦, t) = f0(α → 90◦, 0) exp(−t/τ2), (10)

where τ2 is the characteristic diffusion time and gen-
erally comparable to 1/Dαα at α → 90◦. The fol-
lowing parameters are chosen for two regions L = 3
and 4 based on both previous results [10,18] and Fig. 2:
ωm =0.35, δω =0.15, ω1 = 0.02, ω2 =0.75; at L =3:
Bt = 150 pT, ρ =20, (a) Ek = 271 keV, q = 2.5, τ1 =
5.0× 104 s, τ2 = 2.5× 103 s; (b) Ek = 214 keV, q = 3.0,
τ1 = 2.8 × 104 s, τ2 = 3.0 × 103 s; (c) Ek = 153 keV,
q = 3.5, τ1 = 1.3 × 104 s, τ2 = 3.5 × 103 s; (d) at
L =4: Bt = 200 pT, ρ = 12, Ek = 153 keV, q = 1.5,
τ1 = 1.8 × 103 s, τ2 = 4.0 × 103 s.

Fig.1 Scaled resonant frequency ω versus as a function of

pitch angle α for the four cases (a) to (d) mentioned in the

context

Fig. 1 presents curves of the scaled resonant fre-
quency ω versus the pitch angle α following the gy-
roresonant condition (4) for the four cases (a) to (d)
mentioned in last paragraph. It is easily shown that the
resonant pitch angle α can extend to 90◦. This suggests
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that near the pitch angle 90◦ electrons can be scattered
to smaller pitch angles (i.e. loss-cone), which probably
results in the formation of the flat-top (quasi-isotropic)
distribution.

Fig. 2 presents curves of the pitch angle diffusion co-
efficient Dαα versus the pitch angle α for the four cases
above. The diffusion coefficients are found to approach
peaks near the 90◦, indicating that a rapid scattering
may occur at larger pitch angles.

Time evolutions of pitch-angle distributions are
shown in Fig. 3 for the cases (a) to (d) mentioned above.
Electron distribution is clearly found to evolve with
time from the initial pancake shape into a broad and
flat shape, particularly after 400 s, about seven min-
utes. This is basically consistent with the observation
and previous results [10,19]. Considering that the typ-
ical time scale, about a few days, of the substantial
enhancement in the electron flux during the recovery
phase of geomagnetic storms in the radiation belt of
Earth, the results above are compared favorably with
a reasonable and critical assumption of isotropic distri-
bution function adopted in the previous researches to
evaluate the electron stochastic acceleration due to the
cyclotron wave-particle interaction [6,12,13]. It should
be noted that we actually adopted the variable cosα
to solve the Eq. (5) and obtained the same results as
those in Fig. 3 (in the space f − α) that pitch angle
distribution indeed tends to be isotropic in the space
f − cosα.

Fig.2 Pitch angle diffusion coefficient Dαα as a function

of pitch angle α for the four cases (a) to (d) mentioned in

the context

Fig.3 Evolution of pitch-angle distribution for the four

cases (a) to (d) mentioned in the contex at different time,

t =0 s (t1), 400 s (t2), 1000 s (t3), 2000 s (t4), 3000 s (t5)

and 5000 s (t6)

4 Summary

The purpose of this study is to interpret the CRRES
spacecraft observation that electron distribution func-
tion evolves from the pre-storm pancake-shape to the
flat-top shape during the main phase at L ∼ 3 ∼ 4 by
adopting a quasi-pure pitch angle diffusion model due
to the gyroresonance between the electron and whistler
mode waves distributed over a standard Gaussian spec-
trum. It is found that the characteristic pitch-angle
diffusion time, about seven minutes, is much less than
the typical momentum diffusion time, about a few days,
for electron stochastic acceleration during the recovery
phase of storms. Therefore the current analysis perhaps
offers a further support that the condition of isotropic
distribution adopted in the previous research on the
electron stochastic acceleration is feasible and reason-
able.

It should be noted that the present analysis is limited
to the quasi-pure diffusion process associated with the
field-aligned propagating wave case. In order to fully
account for the diffusion mechanism, further work is to
extend the present analysis to oblique waves with in-
corporation of the momentum diffusion and the mixed
momentum/pitch-angle diffusion contributions.
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