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Abstract
Energetic particles found in planetary magnetospheres and other plasmas often
display a power law and an anisotropy (including loss cone and temperature
anisotropy). In a recent study, a full relativistic kappa-loss cone (KLC)
distribution f κL is initially introduced to model energetic particles, but f κL

is only associated with loss cone anisotropy. We extend this previous study
and develop a generalized relativistic kappa-type (KT) distribution f κT which
incorporates either temperature anisotropy or both loss cone and temperature
anisotropy. We carry out numerical calculations for a direct comparison
between the new KT distribution, the previous KLC distribution and the kappa
distribution f κ , respectively. We find that (a) analogous to f κL, f κT satisfies
the power law not only at lower energies but also at relativistic energies;
(b) analogous to f κ , f κT contains either temperature anisotropy or both loss
cone and temperature anisotropy; (c) the regular kappa distribution is found
to decrease faster than the KT distribution with kinetic energy Ek especially
when θ2 increases (where θ2 is the thermal characteristic parameter), e.g.
f κ/f κT � 10−2 for Ek � 2.0 MeV and θ2 � 0.3; (d) no big difference occurs
between both KT and kappa distributions through energies up to ∼500 keV
for θ2 � 0.03 and (e) the three distributions show different anisotropy
behaviors even for the same overall anisotropy. The results suggest that the
new generalized KT distribution may be applied in space plasmas and other
plasmas including laboratory machines where highly energetic particles exist.

1. Introduction

Energetic particles (with energies of hundreds of keV or above) have been found to play a
critical role in the dynamics of space plasmas or other plasmas by wave–particle interaction.
Similarly to the big effect of the solar wind on the Earth’s magnetosphere [1–3], solar energetic
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particles associated with the solar flare, coronal and interplanetary shocks have a great impact
on the space weather [4]. Energetic (‘killer’) electrons in the outer radiation belt of the Earth
have been found to yield the failure and malfunctions of geostationary spacecraft [5]. Two
fundamental mechanisms have been proposed to account for acceleration of those energetic
electrons: inward radial diffusion through drift resonance with enhanced ULF waves [6–10]
and cyclotron wave–particle interaction through Doppler shift resonance [11–17]. Hence,
specifying and even forecasting fluxes (or distribution) of those energetic electrons during
and following geomagnetic storms constitute important facets of space weather science. One
crucial way is to find an appropriate distribution function to model energetic particle behavior.

Electromagnetic wave instability, which primarily governs time scales for acceleration, is
found to be associated with the behavior of particle distributions or fluxes [18–21] since plasma
turbulence can interact with both thermal and superthermal tails of the particle velocity [22].
The typically hot, tenuous and collisionless space plasma generally has a power-law energy tail
and an anisotropy (including loss cone and temperature anisotropy) and can be basically well
modeled by a generalized Lorentzian (kappa) distribution [23–25]. The kappa distribution has
been extensively adopted in numerous previous works [26–29] to model highly energetic
particle behavior. Various observations, including geostationary orbit data [30], electron
measurements from LANL satellites and GOES 10 [31] and energy spectra of solar events [32],
have demonstrated that energetic particles can be well characterized by a power-law spectrum.
In previous works [33, 34], Summers et al have presented a theoretical evaluation of the
modified plasma dispersion function and found general properties of ion waves and Langmuir
waves for plasmas in which both electrons and ions have kappa distribution. Furthermore,
Summers et al have derived the general properties of the dielectric tensor of the kappa
distribution function [35]. Meanwhile, Mace [36] has derived a dielectric tensor for the
kappa distribution which extends the results of [35] and yields a form which permits further
progress in analytical studies of wave propagation perpendicular to the magnetic field [37,38].
A previous work [39] has also studied generalized Langmuir waves in a magnetized plasma
with a Maxwellian–Lorentzian distribution.

Recently, Xiao [40] developed a fully relativistic kappa-loss cone (KLC) distribution to
model highly energetic particles in plasmas where magnetic mirror geometries occur. The KLC
distribution is found to combine these features of the well-known kappa type (KT) and loss cone
type and follow the power law at both lower energies and relativistic energies. Furthermore,
Xiao et al [41, 42] adopt the KLC distribution (without consideration of anisotropy) to fit
solar energetic particle spectra observed by the IMP 8 and Helios 1 and 2 spacecraft and the
energetic electron spectrum observed by the SOPA instrument on board the 1989-046 and
LANL-01A satellites at the geosynchronous orbit. Xiao et al find that the KLC distribution
fits well with the observed data during different universal times both in lower and higher
energies. However, the KLC distribution is only associated with loss cone anisotropy. Since
energetic particles found in planetary magnetospheres and other plasmas often display both
loss cone and temperature anisotropy, hence in order to model energetic particles in a more
physically realistic way, a generalized relativistic distribution which incorporates both loss
cone and temperature anisotropy needs to be developed. This is the primary goal of this study.

2. General development

2.1. Previous distributions

First, we present a brief description of the previous relativistic KLC distribution f κL which is
associated with only loss cone anisotropy and the kappa distribution, respectively.
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Analogous to the well-known DGH loss cone type distribution [43], the previous
relativistic KLC distribution f κL has been introduced by Xiao [40]:

f κL(p, α) = 1

2π3/2

�((q + 3)/2)

�((q + 2)/2)

1

I 2
κL

[
1 +

√
1 + p2 − 1

κθ2

]−(κ+1)

sinq α, (1)

where � is the gamma function, p = (p2
⊥ + p2

‖)
1/2

is the total momentum of a particle
normalized by mc, c is the speed of light and m is the rest mass of particle; p‖ and p⊥ both
scaled by mc are the particle momenta in directions along and perpendicular to the magnetic
field, α = arctan(p⊥/p‖) is the particle pitch angle, κ is the spectral index, q represents the
pitch-angle anisotropy and θ2 is the thermal characteristic parameter scaled by mc2 and I 2

κL is
the normalized constant given by

I 2
κL = 8B(3/2, κ − 2)

2κ − 1
{3F(κ + 1, 5/2; κ + 1/2; 1 − 2/κθ2)

+ (κ − 2)F (κ + 1, 3/2; κ + 1/2; 1 − 2/κθ2)}, (2)

where B and F are beta and hypergeometric functions respectively.
The well-known non-relativistic generalized Lorentz (kappa) distribution associated with

loss cone and temperature anisotropy in the momentum space can be written [44] as

f κ(p‖, p⊥) = �(κ + l + 1)

π3/2θ2
⊥θ‖κ(l+3/2)�(l + 1)�(κ − 1/2)(

p⊥
θ⊥

)2l
[

1 +
p2

‖
κθ2

‖
+

p2
⊥

κθ2
⊥

]−(κ+l+1)

, (3)

here l, similar to the index ‘q’ in a typical loss cone distribution (i.e. ∝ sinq α), represents the
pitch angle anisotropy associated with a measure of the angular size of the loss cone region;
θ2
‖ and θ2

⊥ are thermal characteristic parameters (scaled by mc2) associated with temperature
anisotropy. Here we substitute the momentum for the velocity in the distribution function
because it is more appropriate when the velocity approaches the speed of light. Previous works
have used a non-relativistic distribution function similar in form to relation (3) in studies of
electromagnetic R-mode and L-mode waves [45] and in evaluation of whistler instability in
the Earth’s foreshock [46]. Xiao et al [41,42] have demonstrated that a distribution analogous
to relation (3) fits well with observational data at relatively lower energies of electrons but
displays deviations at higher energies, typically above hundreds of keV.

2.2. New KT distribution

In order to model energetic particles in plasmas by a more physically realistic way, we assume
a new generalized relativistic KT distribution to take the form

f κT (p‖, p⊥) = CκT

(
p⊥
β⊥

)2l


1 +

√
1 + p2

‖/β
2
‖ + p2

⊥/β2
⊥ − 1

κθ2




−(κ+l+1)

, (4)

where β2
‖ and β2

⊥ are introduced dimensionless characteristic parameters associated with
temperature anisotropy, CκT is the normalized coefficient of the distribution function defined by∫

d3pf κT (p‖, p⊥) = 1 and d3p = 2πp⊥ dp⊥ dp‖ = 2πp2 sin α dp dα. One of our following
jobs is to define CκT .
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By taking the following variable transformations: p‖ = β‖p̂‖ and p⊥ = β⊥p̂⊥, the KT
distribution (4) becomes

f κT (p̂‖, p̂⊥) = CκT p̂2l
⊥


1 +

√
1 + p̂2

‖ + p̂2
⊥ − 1

κθ2




−(κ+l+1)

. (5)

A further assumption of p̂‖ = p̂ cos α̂ and p̂⊥ = p̂ sin α̂ leads to the result

f κT (p̂, α̂) = CκT p̂2l

[
1 +

√
1 + p̂2 − 1

κθ2

]−(κ+l+1)

sin2l α̂ = CκT p̂2lf1(p̂) sin2l α̂. (6)

Assuming
√

1 + p̂2 − 1 = x, we obtain

p̂2 = x(x + 2), dp̂ = x + 1√
x(x + 2)

dx. (7)

It is useful to start with the evaluation of integrals involved with p̂n (n > 0) to obtain
more general results:∫ ∞

0
dp̂p̂nf1(p̂) =

∫ ∞

0
dx

[x(x + 2)]
n−1

2 (x + 1)

[1 + x/κθ2]κ+l+1
= I n

κT . (8)

Following a calculation similar to that used in [40], we obtain the relation

I n
κT = 2n+1B(n+1

2 , κ + l − n)

2κ + 2l − n + 1

{
(n + 1)F

(
κ + l + 1; n + 3

2
; κ + l − n

2
+

3

2
; 1 − 2

κθ2

)

+ (κ + l − n)F

(
κ + l + 1,

n + 1

2
; κ + l − n

2
+

3

2
; 1 − 2

κθ2

) }
. (9)

In the case of n = 2l + 2, equation (9) returns to

I 2l+2
κT = 22l+3B( 2l+3

2 , κ − l − 2)

2κ − 1

{
(2l + 3)F

(
κ + l + 1; 2l + 5

2
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1

2
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κθ2

)

+ (κ − l − 2)F

(
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2
; κ +

1

2
; 1 − 2

κθ2

) }
. (10)

In the case of n = 2l + 4, equation (9) reduces to

I 2l+4
κT = 22l+5B( 2l+5

2 , κ − l − 4)

2κ − 3

{
(2l + 5)F

(
κ + l + 1,

2l + 7

2
; κ − 1

2
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κθ2

)

+ (κ − l − 4)F

(
κ + l + 1,

2l + 5

2
; κ − 1

2
; 1 − 2

κθ2

) }
. (11)

Using the normalization condition:
∫

d3pf (p‖, p⊥) = 1, it is straightforward but a little
tedious to show that

CκT = 1

2π3/2

1

β2
⊥β‖

�(l + 3/2)

�(l + 1)

1

I 2l+2
κT

. (12)

Substituting (12) into (4), the new KT distribution finally becomes

f κT (p‖, p⊥) = 1

2π3/2

1

β2
⊥β‖

�(l + 3/2)

�(l + 1)

1

I 2l+2
κT

(p⊥
β⊥

)2l

[
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√
1 + p2

‖/β
2
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. (13)
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f κT (p‖, p⊥) represented by (13) is a generalized relativistic KT distribution function in scaled
variables and constitutes the main result in this study. The term I 2l+2

κT associated with the
spectral index κ , the thermal characteristic parameter θ2 and the loss cone index l is evaluated
by equation (10).

We shall analyze some features of f κT (p‖, p⊥) in the non-relativistic limit θ2 � 1 and
the relativistic limit θ2 � 1, respectively, as follows.

(a) If θ2 � 1, leading to
√

1 + p2
‖/β

2
‖ + p2

⊥/β2
⊥ − 1 ≈ p2

‖/2β2
‖ + p2

⊥/2β2
⊥. Then f κT ∝

[1+p2
‖/(2β2

‖κθ2)+p2
⊥/(2β2

⊥κθ2)]−(κ+l+1), implying that f κT reduces to the non-relativistic
kappa distribution.

(b) If θ2 � 1,
√

1 + p2
‖/β

2
‖ + p2

⊥/β2
⊥ − 1 ≈ p/β (here β denotes a parameter scaling with β‖

or β⊥), i.e. f κT ∝ [1 + p/(κβθ2)]−(κ+l+1), indicating that the distribution follows a power
law at relativistic energies.

(c) If κ → ∞, f κT ∝ exp[−
√

1 + p2
‖/β

2
‖ + p2

⊥/β2
⊥/θ2], indicating that f κT (p‖, p⊥)

incorporates features of the standard relativistic Maxwellian distribution function (e.g.
[47, 48]). Similarly, the energy part recovers to the usual non-relativistic Maxwellian if
θ2 � 1 and spreads at relativistic energy (∼ exp[−p/βθ2]) if θ2 � 1, consistent with
previous results [47].

2.3. Equilibrium relativistic Vlasov equation

Here we shall present a concise calculation whether this new KT distribution (4) or (13) obeys
the equilibrium relativistic Vlasov equation.

The standard Vlasov equation in both r and v(= vxx̂ + vyŷ + vzẑ) space for particles
with mass m and charge q under an electric field E0 and an ambient magnetic field B0 can be
written as

∂f

∂t
+

∂

∂r
· (f v) +

∂

∂v
· (f a) = 0, (14)

where a is the acceleration of the particles in the volume element, x̂, ŷ and ẑ denote the unit
vector of the coordinate system (x, y, z) in which the ambient magnetic field B0 lies in the
z-direction, i.e. B0 = B0ẑ. Since r and v are independent variables in (14) we may bring v

outside the differential operator. For an electromagnetic force: a = q/m(E0 + v × B0), then
�v · a = 0, we can further obtain

∂f

∂t
+ v · ∂f

∂r
+ a · ∂f

∂v
= 0. (15)

In the equilibrium state, the new KT distribution f κT is independent of time t or space r, then
substitution of f κT (13) into (15) leads to

a · ∂f κT

∂v
= 0. (16)

In the case of a mirror field geometry, it is reasonable to assume that the electric field
vanishes (E0 = 0) in the equilibrium state. Otherwise, the positive and negative charge
particles move in the opposite direction under the drive of the electric field E0, accumulating
and forming a electric field in the anti-direction of E0 and finally canceling the electric field
E0. Hence, we can further have

a = q

m
v × B0 = qB0

m
(vyx̂ − vxŷ). (17)
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Equation (17) indicates that a is perpendicular to v. Since we further have:

∂f κT

∂v
= ∂f κT

∂vx

x̂ +
∂f κT

∂vy

ŷ +
∂f κT

∂vz

ẑ, (18)

then from (16)–(18) we obtain

qB0

m

(
vy

∂f κT

∂vx

− vx

∂f κT

∂vy

)
= 0. (19)

It is easily verified that the most general solution for (19) is

f κT = f κT (p⊥, p‖) or f κT = f κT (v⊥, v‖). (20)

Therefore the new KT (13) distribution f κT satisfies (16) and correspondingly obeys the
equilibrium relativistic Vlasov equation.

Similarly, it is straightforward to show that the new KT distribution f κT also satisfies the
equilibrium relativistic Vlasov equation in both r and p space:

∂f

∂t
+

∂

∂r
· (f p) +

∂

∂p
· (f ṗ) = 0, (21)

where ṗ is the change rate of the particles’ momentum in the volume element.

2.4. Anisotropy and mean kinetic energy

In the following we shall evaluate the mean kinetic energy and anisotropy of energetic particles
modeled by f κT (p‖, p⊥). We adopt the following standard definitions for parallel and
perpendicular mean square momenta [44], namely,

P‖ =
∫

p2
‖f (p‖, p⊥) d3p, P⊥ =

∫
p2

⊥f (p‖, p⊥) d3p. (22)

Relation (22) may be directly associated with temperature in the non-relativistic limit
(T‖ ⇒ mc2P‖; T⊥ ⇒ mc2P⊥/2). Analogous to the corresponding definition (A = T⊥/T‖−1)

in a non-relativistic theory, we therefore use (22) as a definition of ‘temperature’ of T‖ and T⊥
as in [44]. The thermal anisotropy may be defined as

A = P⊥
2P‖

− 1. (23)

The anisotropy AκL of energetic particles for a KLC distribution can be written [40] as

AκL = P⊥
2P‖

− 1 = q + 2

2
− 1 = q

2
(24)

with

P⊥ = I 4
κL

I 2
κL

q + 2

q + 3
, P‖ = I 4

κL

I 2
κL

1

q + 3
, (25)

where I 2
κL = I 2

κT (l = 0), I 4
κL = I 4

κT (l = 0). This suggests that both the KLC distribution and
a typical loss cone distribution (namely, ∝ sinq α) have the same anisotropy parameter.

The anisotropy Aκ of energetic particles for the kappa distribution is given by

Aκ = P⊥
2P‖

− 1 = (l + 1)θ2
⊥

θ2
‖

− 1 (26)

with

P⊥ = 2κθ2
⊥(l + 1)

2κ − 3
, P‖ = κθ2

‖
2κ − 3

. (27)
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For the new KT distribution we have

P⊥ =
∫

p2
⊥f κT (p‖, p⊥) d3p, P‖ =

∫
p2

‖f
κT (p‖, p⊥) d3p. (28)

Using (10), (11) and (13), we further obtain

P⊥ = 2β2
⊥(l + 1)

2l + 3

I 2l+4
κT

I 2l+2
κT

, P‖ = β2
‖

2l + 3

I 2l+4
κT

I 2l+2
κT

. (29)

Then the anisotropy AκT of energetic particles becomes

AκT = P⊥
2P‖

− 1 = (l + 1)β2
⊥

β2
‖

− 1. (30)

This results imply that analogous to a kappa distribution, the overall anisotropy of the new KT
distribution incorporates both loss cone and temperature anisotropy.

In the case of a relativistic limit, it is valuable to use the mean kinetic energy to evaluate
the energy distribution of particles. For each distribution above, the scaled mean kinetic energy
Ek can be obtained by

Ek =
∫

d3p(
√

1 + p2 − 1)f (p‖, p⊥), (31)

which may be evaluated by the standard numerical technique. The anisotropy and the mean
kinetic energy behavior for the KT and kappa distribution functions above will be evaluated
in detail in the following section.

3. Numerical results

In the following we will present calculations of both energy behavior and anisotropy behavior
of energetic electrons modeled by the KT distribution in a direct comparison with the KLC
and kappa distributions.

Since in this study, we focus on the temperature anisotropy, for the energy behavior, we
shall not consider loss cone anisotropy and assume q = 0 in f κL(p, α); l=0 in both f κ(p‖, p⊥)

and f κT (p‖, p⊥). Then equations (1), (3) and (13) can be simplified, respectively, as

f κL(p, α) = 1

4πI 2
κL

[
1 +

√
1 + p2 − 1

κθ2

]−(κ+1)

, (32)

f κ(p‖, p⊥) = �(κ + 1)

π3/2θ2
⊥θ‖κ3/2�(κ − 1/2)

[
1 +

p2
‖

κθ2
‖

+
p2

⊥
κθ2

⊥

]−(κ+1)

(33)

and

f κT (p‖, p⊥) = 1

4πI 2
κT

1

β2
⊥β‖

[
1 +

√
1 + p2

‖/β
2
‖ + p2

⊥/β2
⊥ − 1

κθ2

]−(κ+1)

. (34)

Since
√

1 + p2−1 ≈ p2/2 in (1) and (13) in the non-relativistic limit, without loss of generality,
we assume β2

‖ = 1 and θ2
‖ = 2θ2 in the following calculation in order to make a consistent

and direct comparison.
In the case of isotropy: A = 0 (or β2

‖ = β2
⊥), since I 2

κL = I 2
κT (l = 0), relations (32) and

(34) are the same, indicating that the new KT and KLC distributions have the same energy
behavior. In particular, relation (32) or (34) is found to fit well with data of the solar energetic
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(a) (b)

(c) (d)

Figure 1. Curves of the KT (34) and kappa (33) distributions for A = 3, κ = 4.5, θ2 = 0.003
and different indicated values of pitch angle α. Since θ2 is scaled by mec

2 (i.e. ∼500 keV),
θ2 approximately corresponds to 1.5 keV.

(a) (b)

(c) (d)

Figure 2. Same as figure 1 except θ2 = 0.03 (∼15 keV).

particle and the geostationary orbital energetic electrons spectrum at both lower and relativistic
energies [41,42]. Since KLC is not associated with temperature anisotropy, we therefore shall
not discuss the energy behavior of KLC distribution and refer the reader to [40] for full details.

In figures 1–4, we present curves of the new KT distribution (34) and the regular kappa
distribution (33) for κ = 4.5, the total overall anisotropy A = 3 and different indicated values
of θ2. Figure 5 presents curves of f κT and f κ versus the energy and pitch angle with the same
parameters as those in figure 4. It is found that kappa distribution decays more rapidly than
the KT distribution with the energy Ek; especially when θ2 increases, f κ decays much faster
than f κL at higher energies. There is a turning point for each distribution when θ2 is large;

8
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(a) (b)

(c) (d)

Figure 3. Same as figure 1 except θ2 = 0.3 (∼150 keV).

(a) (b)

(c) (d)

Figure 4. Same as figure 1 except θ2 = 3 (∼1.5 MeV).

both f κ and f κT vary slowly before their turning points and then decay rapidly after them. In
particular, f κ/f κT � 10−2 for Ek � 2.0 MeV and θ2 � 0.3. However, no big difference is
found between both distributions through energies up to ∼500 keV in the case of θ2 � 0.03.
The above results suggest that the new KT distribution may obey a more reasonable power-law
at relativistic energies since energetic electron spectra do not follow a simple power law but
depend on the electron energy range [12, 40].

Furthermore, we shall show the difference between kinetic temperatures T κT and T κ

(defined by T‖ ⇒ mc2P‖, and T⊥ ⇒ mc2P⊥/2) for the KT and kappa distributions and the

difference between mean kinetic energies EκT
k and Eκ

k (all obtained by (31)) for the above

cases, respectively. In table 1, we present values of EκT
k and Eκ

k , T κT and T κ , respectively, for
κ = 6 and the overall anisotropy A = 1. It is found that in the case of θ2 � 0.03 the difference

9
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(a) (b)

Figure 5. Same as figure 4 except for distribution versus pitch angle and kinetic energy.

Table 1. Scaled mean kinetic energy and temperature values.

θ2 0.003 0.03 0.3 3 l

EκT
k 0.01 0.104 1.41 21.1 0

Eκ
k 0.01 0.092 0.65 3.15 0

T κT
‖ 0.004 0.047 1.49 195.3 0

T κ
‖ 0.004 0.04 0.4 4 0

EκT
k 0.01 0.11 1.82 29.6 0.5

Eκ
k 0.01 0.092 0.67 3.2 0.5

T κT
‖ 0.004 0.049 2.32 388.3 0.5

T κ
‖ 0.004 0.04 0.4 4 0.5

EκT
k 0.01 0.115 2.42 41.7 1

Eκ
k 0.01 0.093 0.68 3.3 1

T κT
‖ 0.004 0.05 4.2 871.0 1

T κ
‖ 0.004 0.04 0.4 4 1

is very small between each pair of T κT and T κ , EκT
k and Eκ

k , whereas in the case of θ2 > 0.03

the difference increases, e.g. EκT
k /Eκ

k > 6.6 and T κT /T κ > 48 for θ2 = 3. This is consistent
with the above result.

For the anisotropy behavior, in order to present a direct comparison, we assume the
overall anisotropy is the same for the three distribution functions and consider three cases of
anisotropy for the new KT (13) and kappa (3) distributions: (a) loss cone, (b) temperature
and (c) both loss cone and temperature. The curves for f κL, f κT and f κ (left panels) and
together with the corresponding normalized f/fm (right panels) for AκL = AκT = Aκ = 1 and
AκL = AκT = Aκ = 1.5 are shown in figures 6 and 7, respectively. Here fm is the maximum
value at α = 90◦ corresponding to each of f κL, f κT and f κ at their, respectively, indicated
values of parameters. It is seen that even for the same overall anisotropy, the KT and kappa
distributions either with the temperature anisotropy or with both the loss cone and temperature
anisotropy are quite different from the KLC distribution; whereas the three distributions with
the same loss cone behaves in a similar way, e.g. curves of the corresponding normalized f/fm

merge together in this case (see right panel (f )).

4. Conclusions

In this paper, we have extended the previous study [40] to model energetic particles by
a generalized relativistic KT distribution which incorporates either temperature anisotropy
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(a) (b)

(c) (d)

(e) (f)

Figure 6. (Left panels) Distribution function curves for AκL = AκT = Aκ = 1, κ = 6, p = 8,
θ2
‖ = 2θ2 and θ2 = 3. Cases are shown: l = 0 (temperature anisotropy), l = 0.5 (loss cone and

temperature anisotropy) and l = 1 (loss cone). (Right panels) Profiles of the corresponding scaled
f/fm. Note that curves of f κL, f κT and f κ merge together due to the same loss cone (panel (f )).

or both loss cone and temperature anisotropy. Analogous to the recently developed KLC
distribution [40], the new KT distribution is found to combine features similar to the well-known
KT and loss cone type and also contains features of the relativistic Maxwellian distribution at
κ → ∞. Numerical calculations are carried out specifically for the energetic magnetospheric
electrons with a direct comparison between the new KT distribution, KLC distribution and the
regular kappa distribution. The following results are also obtained.

(a) The kappa distribution f κ generally decreases more rapidly than the KT distribution f κT ;
particularly when θ2 increases, f κ decays much faster than f κL at higher energies. For
a large θ2, a turning point occurs for each distribution after which f κT and f κ drop
sharply. Specifically, f κ/f κL � 10−2 for Ek � 2.0 MeV and θ2 � 0.3. However, no big
difference occurs between both distributions through energies up to ∼500 keV in the case
of θ2 � 0.03.

(b) The differences between the mean kinetic energy and temperature for both KT and kappa
distributions are found to be small for a small θ2 but increases as θ2 increases. For example,
EκT

k /Eκ
k > 6.6 and T κT /T κ > 48 for θ2 = 3. This is consistent with the above results.

(c) Even for the same overall anisotropy, the new KT distribution, the previous KLC
distribution and the regular kappa distribution differ much from each other. However,
the three distributions with the same loss cone behave in a similar way.

In general, since energetic particles present in planetary magnetospheres and other plasmas
often exhibit an anisotropy (including loss cone and temperature anisotropy) and a complex
power law which depends on the particle energy range [12,40], the new KT distribution which
obeys a more physically power law at relativistic energies may be an active tool to model highly
energetic particles in the outer radiation belts of the Earth, the Jovian inner magnetosphere and
other plasmas (e.g. the laboratory machine) where mirror geometries occur.
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Figure 7. (Left panels) Same as figure 6 but for AκL = AκT = Aκ = 1.5. Cases are shown: l = 0
(temperature anisotropy), l = 1 (loss cone and temperature anisotropy) and l = 1.5 (loss cone).
(Right panels) Profiles of the corresponding scaled f/fm. Note that curves of f κL, f κT and f κ

merge together due to the same loss cone (panel (f )).
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[25] Viñas A F, Mace R L and Benson R F 2005 J. Geophys. Res. 110 AO6202
[26] Maksimovic M, Pierrard V and Riley P 1997 Geophys. Res. Lett. 24 1151
[27] Maksimovic M, Pierrard V and Lemaire J F 1997 Astron. Astrophys. 324 725
[28] Saito S et al 2000 Ann. Geophys 18 1216
[29] Dasso S, Gratton F T and Farrugia C J 2003 J. Geophys. Res. 108 1149
[30] Freeman J W et al 1998 J. Geophys. Res. 103 26251
[31] Burin des Roziers E and Li X 2006 Space Weather 4 S06007
[32] Reames D V et al 1997 Astrophys. J. 483 515
[33] Summers D and Thorne R M 1991 Phys. Fluids B 3 1835
[34] Summers D, Thorne R M and Matsumoto H 1996 Phys. Plasmas 3 2496
[35] Summers D, Xue S and Thorne R M 1994 Phys. Plasmas 1 2012
[36] Mace R L 1996 J. Plasma Phys. 55 415
[37] Mace R L 2003 Phys. Plasmas 10 2181
[38] Mace R L 2004 Phys. Plasmas 11 507
[39] Mace R L and M A Hellberg 2003 Phys. Plasmas 10 21
[40] Xiao F 2006 Plasma Phys. Control. Fusion 48 203
[41] Xiao F et al 2008 Plasma Phys. Control. Fusion 50 062001
[42] Xiao F et al 2008 J. Geophys. Res. 113 A05203
[43] Dory R A Guest G E and Harris G E 1965 Phys. Rev. Lett. 14 131
[44] Xiao F, Thorne R M and Summers D 1998 Phys. Plasmas 5 2489
[45] Mace R L 1996 Phys. Scr. T 63 207
[46] Mace R L 1998 J. Geophys. Res. 103 14643
[47] Gladd N T 1983 Phys. Fluids 26 974
[48] Schlickeiser R, Fichtner H and Kneller M 1997 J. Geophys. Res. 102 4725

13

http://dx.doi.org/10.1029/2006JA012050
http://dx.doi.org/10.1029/JA073i009p02839
http://dx.doi.org/10.1029/JA093iA04p02562
http://dx.doi.org/10.1029/97GL00992
http://dx.doi.org/10.1007/s00585-000-1216-2
http://dx.doi.org/10.1029/2002JA009558
http://dx.doi.org/10.1029/97JA03268
http://dx.doi.org/10.1029/2005SW000177
http://dx.doi.org/10.1086/304229
http://dx.doi.org/10.1063/1.859653
http://dx.doi.org/10.1063/1.871967
http://dx.doi.org/10.1063/1.870656
http://dx.doi.org/10.1063/1.1570828
http://dx.doi.org/10.1063/1.1635824
http://dx.doi.org/10.1063/1.1528900
http://dx.doi.org/10.1088/0741-3335/48/2/003
http://dx.doi.org/10.1088/0741-3335/50/6/062001
http://dx.doi.org/10.1029/2007JA012903
http://dx.doi.org/10.1103/PhysRevLett.14.131
http://dx.doi.org/10.1063/1.872932
http://dx.doi.org/10.1088/0031-8949/1996/T63/033
http://dx.doi.org/10.1029/98JA00616
http://dx.doi.org/10.1063/1.864249
http://dx.doi.org/10.1029/96JA03432

	1. Introduction
	2. General development
	2.1. Previous distributions
	2.2. New KT distribution
	2.3. Equilibrium relativistic Vlasov equation
	2.4. Anisotropy and mean kinetic energy

	3. Numerical results
	4. Conclusions
	 Acknowledgments
	 References

