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(Solve three out of the four problems! If time permits, you can solve all.)

1 Proof

1.

−1
2
v2 [∇ · (ρ~v)] − ρ~v · [(~v · ∇)~v] + ∇ · (1

2
ρv2~v)

= ρ~v · ∇(
1
2
v2) − ρ~v · [(~v · ∇)~v]

= ρ~v · [~v × (∇× ~v)]
= 0 (1.1)

2.

~v · (∇ · Π) −∇ · [~v · Π]

= vi
∂

∂xj
Πji −

∂

∂xj
(viΠij)

= vi
∂

∂xj
Πji − vi

∂

∂xj
Πij − Πij

∂

∂xj
vi

= −Πij
∂

∂xj
vi (Π is a symmetric matrix)

= −∇~v : Π (or − Π : ∇~v) (1.2)

3.

~H ·
[
∇× (~v × ~H)

]
+ ~v ·

[
(∇× ~H) × ~H

]
+ ∇ ·

[
~H × (~v × ~H)

]
= ~H ·

[
∇× (~v × ~H)

]
+ ~v ·

[
(∇× ~H) × ~H

]
+ (∇× ~H) · (~v × ~H) − ~H ·

[
∇× (~v × ~H)

]
= 0 (1.3)
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4.

~H · ∇2 ~H −∇ ·
[
~H × (∇× ~H)

]
= ~H · ∇2 ~H − (∇× ~H) · (∇× ~H) + ~H ·

[
∇× (∇× ~H)

]
= ~H · ∇2 ~H −

∣∣∣∇× ~H
∣∣∣2 + ~H ·

[
∇(∇ · ~H) −∇2 ~H

]
= −

∣∣∣∇× ~H
∣∣∣2 (1.4)

2 Magnetohydrodynamics Energy Equation

The continuity equation is given by

∂ρ

∂t
+ ∇ · (ρ~v) = 0 (2.1)

where ρ is the mass density and ~v is the flow velocity.
The momentum equation (equation of motion) is given by

ρ(
∂~v

∂t
+ (~v · ∇)~v) =

µ

4π
(∇× ~H) × ~H −∇p + ∇ · Π (2.2)

where ~H is magnetic field intensity, µ is a material dependent parameter called the permeability,
p is the scalar pressure, and Π is the viscous stress tensor.

Πik = ζ(
∂vi

∂xk
+

∂vk

∂xi
− 2

3
δik∇ · ~v) + ζ

′
δik∇ · ~v (2.3)

The energy equation (conservation of energy) is given by

∂W

∂t
+ ∇ · ~q = 0 (2.4)

where W is total energy per unit volume and ~q is the energy flux density through the boundary
of the fluid element. The total energy is the sum of the kinetic, magnetic, and internal energies:

W =
1
2
ρv2 +

µ

8π
H2 + ρe (2.5)

where e is the internal energy per unit mass. The energy flux density is given by

~q = ρ~v(
1
2
v2 + e +

p

ρ
) +

µ

4π
~H × (~v × ~H)

− 1
σ

(
c

4π
)2 ~H × (∇× ~H) − ~v · Π − χ∇T (2.6)

where σ is the electrical conductivity, χ is the thermal conductivity, and T is the temperature.
Derive the non-conservation form of the energy equation as the following, which only contains

the time derivative of e.

ρ
∂e

∂t
+ ρ~v · ∇e = −p∇ · ~v + ∇~v : Π + ∇ · (χ∇T ) +

1
σ

J2 (2.7)

Hint: The magnetohydrodynamics equations are all shown in Gaussian electromagnetic
units system. The equations of magnetic field are given by

∂ ~H

∂t
= ∇× (~v × ~H) +

c2

4πµσ
∇2 ~H (2.8)

∇ · ~H = 0 (2.9)
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3 Frozen Flux Theorem

Under ideal MHD assumption, the magnetic field equations (SI units) reduce to

∂ ~B

∂t
= ∇× (~v × ~B) (3.1)

∇ · ~B = 0 (3.2)

where ~B is the magnetic flux density. Consider a closed curve C within the fluid, and let every
point on the curve be moving with the local fluid velocity. We say that C is co-moving with
the fluid, in the Lagrangian sense. Let S be a surface boundary by C, then we can obtain the
surface integral: ∫∫

∂ ~B

∂t
· d~S −

∮
(~v × ~B) · d~C = 0 (3.3)

As S1(t) moves in a infinite short time dt, S1(t), S2(t + dt), and swept lateral area S3 form
a closed surface. This is shown in Figure 1 at time t + dt. For ∇ · ~B = 0, we can obtain that∫∫

S2

~B(t + dt) · d~S −
∫∫

S1

~B(t + dt) · d~S +
∫∫

S3

~B(t + dt) · d~S = 0 (3.4)

Figure 1: A surface moving with the fluid

Let dt → 0, then

d
dt

∫∫
S

~B · d~S −
∫∫

S

∂ ~B

∂t
· d~S +

∮
C
(~v × ~B) · d~C = 0 (3.5)

With (3.3), we find

d
dt

∫∫
S

~B · d~S = 0 (3.6)

We conclude that in ideal MHD, the magnetic flux through any co-moving closed circuit
remains constant. This important result is called the frozen flux condition.

Consummate all the derivation.

4 Magnetic Diffusion

A unidirectional magnetic field ~B = B(x, t)~ey has the initial form

B(x, 0) =
{

+B0, x > 0
−B0, x < 0

(4.1)
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If the magnetic Reynolds number is very small, according to the induction equation, the evolution
of the magnetic field can be described as

∂B

∂t
= η

∂2B

∂x2
(4.2)

where η is the magnetic viscous coefficient. The solution is

B(x, t) = B0erf(ξ) (4.3)

where ξ =
x√
4ηt

and erf(ξ) is the error function given by

erf(ξ) =
2√
π

∫ ξ

0
e−z2

dz (4.4)

Having known B(2
√

4ηt, t) ≈ 0.995B0 and
∫ 2
−2

[
1 − erf2(ξ)

]
dξ ≈ 1.592, estimate the dissipation

rate of the magnetic energy.
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