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(Solve three out of the four problems! If time permits, you can solve all.)
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2 Magnetohydrodynamics Energy Equation

The continuity equation is given by

ap ~
Vv - 2.1

where p is the mass density and ¢ is the flow velocity.
The momentum equation (equation of motion) is given by
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where H is magnetic field intensity, 4 is a material dependent parameter called the permeability,
p is the scalar pressure, and II is the viscous stress tensor.
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The energy equation (conservation of energy) is given by
oW
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where W is total energy per unit volume and ¢ is the energy flux density through the boundary
of the fluid element. The total energy is the sum of the kinetic, magnetic, and internal energies:
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where e is the internal energy per unit mass. The energy flux density is given by
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where o is the electrical conductivity, x is the thermal conductivity, and 7" is the temperature.
Derive the non-conservation form of the energy equation as the following, which only contains
the time derivative of e.
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Hint: The magnetohydrodynamics equations are all shown in Gaussian electromagnetic
units system. The equations of magnetic field are given by
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3 Frozen Flux Theorem

Under ideal MHD assumption, the magnetic field equations (SI units) reduce to

OB R
E = V X (’U X B) (31)
V-B = 0 (3.2)

where B is the magnetic flux density. Consider a closed curve C within the fluid, and let every
point on the curve be moving with the local fluid velocity. We say that C' is co-moving with
the fluid, in the Lagrangian sense. Let S be a surface boundary by C, then we can obtain the

surface integral:
é = — —
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As S1(t) moves in a infinite short time d¢, Si(t), S2(t + dt), and swept lateral area S3 form
a closed surface. This is shown in Figure [ at time ¢ 4+ d¢. For V - B = 0, we can obtain that

//S E(t+dt).d§//s é(t+dt).d§+/s B(t+dt)-dS=0 (3.4)
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Figure 1: A surface moving with the fluid

Let dt — 0, then
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With B3], we find
d//é dS=0 (3.6)
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We conclude that in ideal MHD, the magnetic flux through any co-moving closed circuit
remains constant. This important result is called the frozen flux condition.
Consummate all the derivation.

4 Magnetic Diffusion

A unidirectional magnetic field B = B (x,t)€y has the initial form

+By, x>0
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If the magnetic Reynolds number is very small, according to the induction equation, the evolution

of the magnetic field can be described as
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where 7 is the magnetic viscous coefficient. The solution is

B(x,t) = Boperf(§)

where £ = and erf(¢) is the error function given by
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Having known B(2+/4nt,t) ~ 0.995B, and ffZ [1 —erf?(£)] d¢ ~ 1.592, estimate the dissipation

rate of the magnetic energy.



