Basic Space Plasmas Physics Assignment 6

T. Chen^{*} J. G. Huang[†] W. Y. Li[‡] (TA) Center for Space Science and Applied Research, CAS.

October 21^{st} , 2011

(Solve two out of the three problems! If time permits, you can solve all.)

1 Oblique Alfven Wave

The ideal MHD equation for magnetized plasma is given by

$$\rho_0 \frac{\partial V_1}{\partial t} = \frac{1}{\mu_0} (\nabla \times \vec{B}_1) \times \vec{B}_0 \tag{1.1}$$

$$\frac{\partial B_1}{\partial t} = \nabla \times (\vec{V}_1 \times \vec{B}_0) \tag{1.2}$$

where ρ_0 is the mass density, \vec{V}_1 and \vec{B}_1 are the small perturbation of the bulk velocity and the magnetic field, respectively, μ_0 is the permeability in vacuum.

The incompressible plasma is initially in stationary equilibrium state with uniform density ρ_0 and magnetic field \vec{B}_0 . Show the dispersion relation of the oblique Alfven wave as

$$\omega^2 = \frac{(\vec{k} \cdot \vec{B}_0)^2}{\mu_0 \rho_0} \tag{1.3}$$

where ω is the wave frequency and \vec{k} is the wave vector.

2 Upper Hybrid Electrostatic Wave

Consider the plasma is in high-frequency motion, only electron moves through a isothermal process $T_e = constant$, and magnetic field $B_0 \vec{e}_z$ does not change (non-magnetized plasma). A plane wave where all perturbed physical quantities vary as $\exp(i\vec{k}\cdot\vec{r}-i\omega t)$ is adopted to study the wave. Wave vector and disturbed electric field are all in x direction. The characteristic thermal speed of the electron is given by $u_{te} = (T_e/m_e)^{1/2}$. Linearizing single fluid MHD equation and Maxwell equation about a stationary equilibrium state with electric field $\vec{E}_0 = 0$ and $\vec{u}_{0e} = 0$, we have

$$\begin{cases}
-i\omega n_{1} + ikn_{0}u_{1x} = 0 \\
-i\omega m_{e}u_{1x} = -eE_{1x} - eu_{1y}B_{0} - ikT_{e}n_{1}/n_{0} \\
-i\omega m_{e}u_{1y} = eu_{1x}B_{0} \\
ikE_{1x} = -e\frac{n_{1}}{\varepsilon_{0}}
\end{cases}$$
(2.1)

*tchen@cssar.ac.cn

[†]huangjg@cssar.ac.cn

[‡]wyli@spaceweather.ac.cn

Table 1: Plasma Parameters		
	Magnetosphere	Magnetosheath
$n_p (m^{-3})$	2×10^7	8×10^7
$n_e (m^{-3})$	2×10^7	8×10^7
$\vec{U}~({\rm km/s})$	(0, 0, 0)	(150, 0, 0)
\vec{B} (nT)	(0, 0, 30)	(25, 0, 0)

Show the dispersion relation of upper hybrid electrostatic wave.

3 Kelvin-Helmholtz Instability

Use the data shown in the Table 1 to predict whether the Earth's magnetopause is stable or unstable to the growth of Kelvin-Helmholtz waves. Estimate the maximal growth rate and the corresponding wave phase velocity.