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General Properties of MHD Equilibria 

• Equilibrium

• Plasma Beta

• Pressure and Tension

• Diamagnetic current

• Plasma Diffusion 
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plasma magnetohydrodynamic equilibrium
•Equilibrium structures (no time dependence, no plasma flow) are important and 

often approximately a reasonable assumption for space plasmas during quiet 

times. 
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Auxiliary Derivation

• Here show 

• Consider the component form of the second term on the right:

while the component form of 

the ∇B2 term on the right is:

• We now examine the 

component form of the 

left hand side:
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• The ratio between the thermal (kinetic) pressure and the magnetic pressure:

sum of the thermal pressure          and                       the magnetic pressure
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• The RHS can be neglected in many cases like 

a straight magnetic field or when B varies 

slowly along B itself

Plasma 



Example : pressure-balanced plasma column θ – pinch

So called because currents flow in θ direction

Take the column to be ∞ length, uniform: B has only z –

component, j has only θ component, 𝛻𝑝 has only r 

component, so we only need force: 

Ampere: 

Eliminate j

Solution: 



Magnetic Tension

It is know that two wires carrying parallel 

currents attract as if the magnetic field lines of 

force were under tension

Magnetic tension is described by the term

If the magnetic lines of force are straight and parallel then 

𝐵 = 𝐵𝑥𝐢 and 𝑩 ∙ 𝛻𝑩 = 0. This term is only important if the 

magnetic lines of force are curved. 



To show this, consider the geometric 

construction as shown and let 

be the unit vector in the 

direction of the field. By definition:

Where l is the coordinate alone the line of force

It is clear that 

Where     is the normal to the field line, while                 , therefore,  

So that the magnetic tension is in inversely proportional to the 

radius  of curvature of the magnetic field line.  The lines of force 

can be regarded as elastic cords under tension  



Magnetic stress tensor

The existence of magnetic pressure and tension  shows that the 

magnetic force is different in different directions, and so the 

magnetic force ought to be characterized by an anisotropic 

stress tensor. 

𝑱 × 𝑩 =
1

𝜇0
𝜵 × 𝑩 × 𝑩 =

1

𝜇0
−𝛻

𝐵2

2
+ 𝑩 ∙ 𝛻𝑩 = −

1

𝜇0
𝛻 ∙ [

𝐵2

2
I- 𝑩𝑩]

Where I is the unit tensor and the relation 𝛻 ∙ 𝑩𝑩 = 𝜵 ∙ 𝑩 𝑩 + 𝑩 ∙ 𝜵𝑩 = 𝑩 ∙ 𝜵𝑩

𝜌
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ 𝛻𝑉 = 𝑱 × 𝑩 − 𝛻𝑝 = −𝜵 ∙ [

𝑝 +
𝐵𝟐

2𝜇0

𝑝 +
𝐵𝟐

2𝜇0

𝑝 −
𝐵𝟐

2𝜇0

]

B=(0,0,B) in local coordinate system

Showing again the magnetic field acts like a pressure in the 

directions transverse to B (i.e. x, y directions) and like a 

tension the direction parallel to B.



Magnetic stress tensor

While the above interpretation is certainly useful, it can be 

somewhat misleading because it might be interpreted as 

implying the existence of a force in the direction B when in fact 

no such force exists because 𝑱 × 𝑩 clearly does not have a 

component in the B direction. A more accurate way is as follows:

Let 𝑩 = 𝐵𝒔 where s is the unit vector along the B field. 𝐵 ∙ 𝛻 𝐵 = 𝐵
𝑑(𝐵𝒔)

𝑑𝑠
=

𝐵
𝑑𝐵

𝑑𝑠
𝐬 + 𝑩𝟐 𝑑𝒔

𝑑𝑠
=

𝑑(𝐵2/2)

𝑑𝑠
𝒔 − 𝐵𝟐

𝒏

𝑹
 , where n is the principle normal to the magnetic 

field and R is the radius of curvature

𝑱 × 𝑩 =
1

𝜇0
−𝛻

𝐵2

2
+ 𝑩 ∙ 𝛻𝑩 = −

𝐵2

𝜇0

𝒏

𝑅
−

1

𝜇0
𝛻

𝐵2

2
−
𝑑(𝐵2/2)

𝑑𝑠
𝒔

=
1

𝜇0
[−𝛻⊥

𝐵2

2
− 𝐵2

𝒏

𝑅
]

The first term portrays a magnetic force due to pressure gradients perpendicular 

to the magnetic field. The second term describes a force which tends to 

straighten out magnetic curvature.  



Magnetohydrostatics

• In the study of dynamical systems it is always useful to start with 
a study of the simplest solutions. These are usually the stationary 
states.

• Many physical processes in plasma systems occur slowly, i.e. on 
time-scales which are much longer than the typical time-scale of 
the system. 

➢ No time dependence and no plasma flows 

➢ More precise: The dynamic terms in MHD are small compared 
with static forces (Lorentz-force, plasma pressure gradient) 

0p− +  =J B

0 =B J

0• =B



Magnetic Surface 0 ( )p p=  − +  = − B J B B

Consider some arbitrary volume in which 

𝛻𝑝 ≠ 0 .Drawn contours ( surface in 3-D) 

on which p=const. At any point on this 

surface, 𝛻𝑝 is perp to the surface.

0p−  =B

B lines is in the surface of p = const. In equilibrium isobaric 

surface are “magnetic surface” 

Pressure is constant on a field-line (in MHD  situation)

Implies B is also perp to the ∇𝑝 



Current Surface

J 0p =

0 ( )p p=  − +  = − J J B J

Isobaric Surface are “current surface”. Therefore,

“Magnetic Surfaces” are “ Current Surfaces”

It is important to note that the existent of magnetic surface is 

guaranteed only in the MHD approximation when 𝛻𝑝 ≠ 0. 

Taking account of corrections to MHD, we may not have 

magnetic surfaces even if 𝛻𝑝 ≠ 0



Low-beta equilibria: Force-free plasmas

In the cases the ratio of kinetic to magnetic pressure is small, β 

≪ 1, and we can approximately ignore 𝛻𝑝 .  Such a 

equilibrium is called “force free”

0p− +  =J B 0 =J B

Implies J and B are parallel. ( )r=J B

0 ( ( ) ) ( ) ( ) ( ) ( ) ( )r r r r   =   =   =   +  = J B B B B

This means that 𝜇 cannot vary along a magnetic field line. In 

general,𝜇 can have different values on different field lines, but 

it has to be a constant on one field line. 

Scalar function 

Where μ is a scalar, which in principle can be a function of space.

Current flows along field lines, but do not across.  Take divergence:



Low-beta equilibria: Force-free plasmas

The simplest case is to consider μ to be constant. – linear 

force-free field.  

This is a somewhat more convenient form because it is linear in 

B (for specified 𝜇 ). For a special case where 𝜇 = 0,  the 

electric current is 0,  the magnetic field is then a potential field. 

A linear equation can in general be solved by a series expansion. 

Since it is still a vector equation rather than a scalar equation, 

obtaining a general solution by series expansion is slightly 

complicated. Here we shall not discuss this general solution, 

but only consider the solution with cylindrical symmetry. 

Written in cylindrical coordinates assuming cylindrical 

symmetry (i.e. no variation of any quantity in θ or z directions):



Leads to a Bessel function solution: 

Where J0 and J1 are Bessel functions of order 0, 1.  

Potential minimum-energy theorem:

Let’s us assume a volume of plasma V in which a magnetic 

field B is present whose value is zero at the surface.  We 

decompose this field into the form:

𝑩0 = 𝑩𝑝 +𝑩1

Where 𝑩𝑝 = −∇∅, is a potential field. By construction the field 𝑩1

is zero at the surface of the volume.  The magnetic energy is: 



𝑊 = න
(𝐵𝑝+𝐵1)

2

2𝜇0
𝑑𝑉 = න

𝑩𝑝
2 + 2𝑩𝑝 ∙ 𝑩1 + 𝑩1

2

2𝜇0
𝑑𝑉

න𝑩𝑝 ∙ 𝑩1𝑑𝑉 = −න∇∅ ∙ 𝑩1𝑑𝑉 = −න∇ ∙ ∅𝑩1 𝑑𝑉 = −න∅𝐵1𝑛𝑑𝑆 = 0

Thus 𝑊 = 
𝑩𝑝
2+𝑩1

2

2𝜇0
𝑑𝑉, only if 𝐵1 = 0, W takes the minimum 

value, and the potential field corresponds to a state of minimal 

magnetic field.  In solar physics, we define 𝑊1 = 
𝑩1
2

2𝜇0
𝑑𝑉 as 

the free magnetic energy, this is the maximal energy that can be 

released during a solar flare. 



Diamagnetic Drift

• Fluid momentum equation:

( ) ( )nm qn p
t

 
+  = +  −

  

u
u u E u B

Since a fluid element is composed of many individual particles, 

one would expect the fluid to have drifts perpendicular to B if the 

individual guiding centers have such drifts. However, since the 

𝛻𝑝 term appears only in the fluid equations, there is a drift 

associated with it which the fluid elements have but the particles 

do not have. 



• Assuming : Uniform E and B,  n and p have a gradient

• To study the motion perpendicular to B the cross product of 

the momentum equation with B is taken (neglecting the LHS):

( )0 qn p= +   − E u B B B

that yields 

2 2

p

B qnB
⊥

  
= = −

E B B
u v

• The first term is the usual ExB drift, as in the particle 

description, the second term is called diamagnetic drift



• The diamagnetic drift does not depend on the mass but 

changes sign with the charge: this causes a diamagnetic 

current since electrons and ions drift in opposite directions

2dia

B p

B

⊥ ⊥
=j

➢ Diamagnetic current arise from Lamor motion when there 

is a density  gradient.

density  gradient. 𝛻𝑛



Neutral sheet current

A typical example of a diamagnetic current is the neutral sheet in 

the magnetotail of the Earth, which divides the regions of inward 

(in the northern lobe) and outward magnetic fields.

Parameters: 

temperature 1-10 keV, 

transverse field 1-5 nT, 

density 1 cm-3, 

thickness 1-2 RE, 

very high plasma beta,

 = 10~100. 



Here BL is the lobe magnetic 

field, and LB its variation 

scale length.

The Harris model sheet is shown below.

The boundary of the plasma sheet is 

determined by a balance between the 

magnetic pressure of the tail lobes and the 

kinetic pressure of the plasma sheet plasma:

0

2

2
~ L

B
nkT





• The diamagnetic current jD decreases the magnetic field 

inside the plasma keeping the sum of thermal and magnetic 

pressures constant everywhere in the cylinder

B

jD

low B

high p

high B

low p



• The infinite, homogeneous plasmas for the equilibrium 

conditions are, of course, highly idealized. 

• Plasmas follow density gradients and diffuse trying to fill 

lowest density regions: plasma diffusion occur, at different 

rates, with and without magnetic fields

• In the case of weakly ionized plasmas the diffusion occurs 

mainly because collisions between charged particles and 

neutrals

Plasma Diffusion



Collision Primer

• A flux of test particles is colliding with target particles of 

density nT

• Target particles offer a cross-sectional area s and are 

contained in a slab of area A and thickness dx

• Collisions occur only when a test particle is intercepted by a 

target and in that case the test particle will loose all its 

momentum

dx

A

s



• The number of particles in the slab is nAdx and the fraction 

area blocked by the target particles is 
𝜎𝑛𝐴𝑑𝑥

𝐴
= 𝜎𝑛𝑑𝑥

• If flux of incident particles is Γ the flux emerging from the 

slab is Γ *=Γ(1-σndx). 

d
n

dx
s


= − 

that has the solution  

0 0exp( ) exp( )mn x xs  =  − =  −

where the quantity λm =1/nσ is called the mean free path

for collisions  



• If u is the velocity of the incident particles, the mean time 

between collisions is t=λm / u and the mean collision 

frequency will be ν= u / λm=unσ

• For incident particles with a velocity distribution the 

collision frequency is defined by taking the average of v

over that distribution 𝜈 = 𝑛 < 𝑢𝜎 >

• σ can also be function of the velocity



• Consider the basic plasma diffusion process with a scalar 

pressure term and collisional plasma (No magnetic field)

( )nm qn p mn
t


 

+  = − −
  

u
u u E u

• For sufficiently slow motion (compared to the collision 

time), a steady state is considered.

0 qn p mn= − −E u



( )
1

qn p
mn

= −u E

• For isothermal plasmas (and subject to the ideal gas

equation of state) it can be written

0 qn p mn= − −E u

( )
1 B

B

k Tq n
qn k T n

mn m m n  


= −  = −u E E



• The coefficients of E and grad n/n are called mobility (迁移）

and diffusion coefficient 

q

mv
 =

• Introducing the mobility and the diffusion coefficient the 

equation for u becomes

B

q D

k T
 =

q n
D

q n



= −u E

and are connected by the Einstein relation

Bk T
D

mv
=



• The flux nu of particles can be written then as

• Fick’s law describes a random-walk type of diffusion: the 

motion along grad n occurs only because there are more 

particles in regions with larger n

• When the particles are neutral (or E=0), the Fick’s law is 

found as a special case :  

q
n n D n

q
 = = − u E

n D n = = − u



Diffusion Equation

• The continuity equation for each species j=i,e can be written 

as
( ) 0

j
j

n
n

t


+  =


u

and by using Fick’s law j j jD n = − 

( ) 0
j

j j

n
D n

t


+  −  =



and for uniform diffusion coefficient yields a diffusion equation

2 0
j

j j

n
D n

t


−  =





Ambipolar Diffusion

• In a bounded plasma there will be a flux of particles (diffusion) 

towards the container walls. Electrons and ions near the wall 

recombine. Plasma density towards the wall tends to zero.

• For slow flows the time dependence in the momentum equation can 

be neglected. 

• If the electron and ion fluxes are not equal a charge unbalance will 

occur near the wall. This charge unbalance will eventually adjust 

the fluxes to maintain plasma quasi-neutrality

• Electrons are lighter and in thermodynamic equilibrium will travel 

faster. Electrons will be the first to leave the plasma and will 

establish a negative charge near the wall



• Further flow of electrons will be prevented by this negative 

space charge. The ion flux will be increased.

• A balance is reached when the space charge electric field 

produces equal ion and electron fluxes:

i e
i i i i i e e e e e

i e

q q
n D n n D n

q q
  = −  =  = − E E

i e

i e

D D n

n 

− 
=

+
E

• The equilibrium flux will be then

Γ𝑖 = 𝜇𝑖
𝐷𝑖 − 𝐷𝑒
𝜇𝑖 + 𝜇𝑒

∇𝑛 − 𝐷𝑖∇𝑛𝑖 = −
𝜇𝑖𝐷𝑒 + 𝜇𝑒𝐷𝑖
𝜇𝑖 + 𝜇𝑒

∇𝑛
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+
=

+

ambipolar diffusion equation

2 0a

n
D n

t


−  =



• ambipolar diffusion coefficient

the case of me<<mi , 𝜇𝑒≫ 𝜇𝑖 and Ti=Te

𝐷𝑎 ≈ 𝐷𝑖 +
𝜇𝑒
𝜇𝑖
𝐷𝑒 = 𝐷𝑖 +

𝑇𝑒
𝑇𝑖
𝐷𝑖 = 2𝐷𝑖

• The ambipolar diffusion enhances the diffusion rate by a 

factor of two but the diffusion is still controlled by the 

slower species



Collisions in Fully Ionized Plasmas

• Collisions among particles of the same species produce on 

average a small diffusion effect because the guiding centers 

remain, for the most part, in the same position.

• Collisions between particles of opposite charge can cause 

instead a significant change in the guiding center position: 

these collisions generate diffusion.

• Electrons execute a random-walk type of diffusion, ions are 

diffusing as a result of the cumulative effect of the collisions.



Plasma Resistivity

• The fluid equations of motion for electron and ions in 

presence of charged-particle collisions are

( ) P Fi
i i i i i i ie

d
n m q n

dt
= +  −  +

u
E u B

F ( )ei e e e i eim n = − −u u

( ) P Fe
e e e e e e ei

d
n m q n

dt
= +  −  +

u
E u B

F ( )ie i i i e iem n = − −u u

• Conservation of momentum requires

F Fie ei= −



• Fie (Fei) represent the momentum gain of the ion (electron) 

fluid due to the collisions with the electrons (ions)

• Since only Coulomb collisions are involved Fie and Fei

will be proportional to the square of the charge (here 

considered as e2)

• Fie and Fei must be also proportional to the ion and 

electron densities (here considered as n2). 

• Therefore, on physical grounds, it can be written

2 2F ( )ei i ee n= −u u



• Comparing

2 2F ( )ei i ee n= −u u

F ( )ei e e e i eim n = − −u u

it is readily found 

𝜂 =
𝑚𝜈𝑒𝑖

𝑒2𝑛

• plasma specific resistivity



• By evaluating the electron-ion collision frequency (short-range, 

large angle collision) through a particle trajectory 

approximation it is found

(where u is the impact velocity) and therefore the 

resistivity is

• For a Maxwellian distribution

( ) ( )

2 1 2

2 3 2
04 B e

e m

k T





=

21 1

2 2
Bmu k T=

𝜈𝑒𝑖 =
n𝑒4

16𝜋𝜖2
0
𝑚2𝑢3

𝜂 =
𝑚

𝑛𝑒2
𝜈𝑒𝑖 =

𝑒2

16𝜋𝜖2
0
𝑚𝑢3



• The Spitzer resistivity includes a correction to provide 

better accuracy given by a factor ln Ʌ

(Coulomb logarithm) as 

The Ʌ represents the maximum impact parameter.    

ln Ʌ is insensitive to the exact values of the plasma 

parameters. For most purposes, it will be sufficiently 

accurate to let it = 10 regardless of the type of plasma 

involved. 

( ) ( )

2 1 2

2 3 2
0

ln
4 B e

e m

k T





= 



• In case a plasma current is carried only by the electrons, 

with B=0 and with Te~0 (cold plasma) the electron fluid 

equation of motion in steady state is simply

0 Feien= − +E

( )i een= −j u u

• Since
2 2F ( )ei i ee n= −u u

and

then
=E j

that is the simplest form of the Ohm’s law



• In a fully ionized plasma the plasma resistivity is 

independent on the density n because if the charge carriers 

increase also the collisional friction increase and the effects 

cancel out.

• In a weakly ionized plasma instead the collisional friction 

is due only to the neutrals and therefore does not increase 

with n and the current, for a given E is proportional to n.

• Fully ionized plasmas become “collisionless” at high 

temperature .
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